Evidence of potential synergy between aquaculture and offshore renewable energy
DOI:
https://doi.org/10.36688/imej.5.133-141Keywords:
Aquaculture, Connectivity, Larvae, Numerical model, Offhsore renewable energyAbstract
Worldwide increased demand for offshore renewable energy (ORE) industries and aquaculture requires developing efficient tools to optimize the use of the offshore space, reducing anthropic pressure. The synergetic development of marine renewable energy infrastructure with mariculture has been hypothesized as a way to reduce costs through shared infrastructure. In the Irish Sea, blue mussels (Mytilus edulis L.) represent 40 - 50 % of the total gross turnover of Welsh shellfish industries and the industry has been operating sustainably for over 50 years in North Wales. However, the region is also attractive for tidal energy projects, with strong tidal currents (> 2m/s) occurring, and offshore wind farms, with shallow waters (approx. 50 m) and consistent winds. In this context, it is of scientific and economic interest to study the potential impact of ORE on shellfish larvae recruitment. A numerical approach has been developed using an Eulerian hydrodynamic model coupled with a Lagrangian particle tracking model, which allowed the simulation of tidal currents, wind-driven currents and larval dispersal. Results show: 1) interannual variability of density distribution of larvae; and 2) strong connectivity between commercial shellfish beds and ORE sites. This study shows the importance of ORE site selection in order to: 1) reduce biofouling on ORE infrastructures and 2) develop multi-use platforms at sea to combine needs for ORE and for mariculture.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jonathan Demmer, Matthew Lewis, Peter Robins, Simon Neill
This work is licensed under a Creative Commons Attribution 4.0 International License.
I the author/we the authors understand that I/we retain copyright over our article. I/we grant a licence to IMEJ to: publish my/our article under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited, and identify IMEJ as the original publisher.