Sensitivity analysis of extreme loads acting on a point-absorbing wave energy converter


  • Claes Eskilsson Aalborg University
  • Johannes Palm
  • Pär Johannesson
  • Guilherme Moura Paredes



end-stops, extreme waves, generalized polynomial chaos, mooring dynamics, sensitivity analysis, variation mode effect analysis, wave energy converter


There are many uncertainties associated with the estimation of extreme loads acting on a wave energy converter (WEC). In this study we perform a sensitivity analysis of extreme loads acting on the Uppsala University (UU) WEC concept. The UU WEC consists of a bottom-mounted linear generator that is connected to a surface buoy with a taut mooring line. The maximum stroke length of the linear generator is enforced by end-stop springs. Initially, a Variation Mode and Effect Analysis (VMEA) was carried out in order to identify the largest input uncertainties. The system was then modelled in the time-domain solver WEC-SIM coupled to the dynamic mooring solver Moody. A sensitivity analysis was made by generating a surrogate model based on polynomial chaos expansions, which rapidly evaluates the maximum loads on the mooring line and the end-stops. The sensitivities are ranked using the Sobol index method. We investigated two sea states using equivalent regular waves (ERW) and irregular wave (IRW) trains. We found that the ERW approach significantly underestimate the maximum loads. Interestingly, the ERW predicted wave height and period as the most important parameters for the maximum mooring tension, whereas the tension in IRW was most sensitive to the drag coefficient of the surface buoy. The end-stop loads were most sensitive to the PTO damping coefficient.




How to Cite

Eskilsson, C., Palm, J., Johannesson, P., & Paredes, G. M. (2022). Sensitivity analysis of extreme loads acting on a point-absorbing wave energy converter. International Marine Energy Journal, 5(1), 91–101.



EWTEC 2021 Special issue papers (Part 1)