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Abstract—This paper describes the optimisation of arrays of
wave energy converters (WECs) of point absorber type. The
WECs are spherical in shape and operate in heave only. Previous
work is extended to an optimisation of array layouts without
a prescribed geometry. The objective function is chosen as the
mean of the array interaction factor over a prescribed range
of incident wave angles. This formulation forces the array to
perform optimally over a specified range of wave angle, without
direct concern for wavelength variations. Both constrained and
unconstrained WEC motions are considered, with constrained
optimisations limiting device displacements to two or three times
the incident wave amplitude. The increased freedom in this
more general optimisation results in a 70% to 140% increase in
objective function values compared to the analogous linear array
optimisations. As in previous studies of this nature, unconstrained
arrays tend to contain closely spaced WECs and larger displace-
ment amplitudes, whereas constrained optimal arrays are more
widely spaced. It is shown that the prescribed range of incident
wave angle has a great effect on the optimal array layout, with
better performance achieved for smaller ranges of wave angle due
to better tuning of the array members. A previously identified
trade-off in linear arrays, between performance stability to
different incident wave parameters, is shown not to apply to
general array layouts.

Index Terms—Wave-Power, Arrays, Optimisation, Interaction,
Point Absorber.

I. INTRODUCTION

The fundamental modelling on arrays of wave-power de-
vices was presented independently by Evans [1] and Falnes
[2]. Many subsequent papers have applied this theory to assess
arrays of differing configurations, a relevant selection is given
by [3]–[8]. More recently, optimisation of array layouts has
become an important topic. General two-dimensional arrays of
five devices were optimised by Fitzgerald [9] and reported in
[6], where the array layouts were optimised by maximising the
interaction factor in a point absorber regime. Arrays of heaving
cylindrical wave energy converter (WECs) were similarly
optimised using Genetic Algorithms by Child [7], within a full
interaction regime. Optimisation of the mean performance of
arrays of point absorbers are considered by McGuinness &
Thomas [10]–[13], where the arrays are optimised such that
good performance is maintained even if optimal conditions are
perturbed.

Submission ID: 1384. Conference Track: Wave hydrodynamic modelling.
PhD funding for Justin McGuinness was provided by a Government of Ireland
Postgraduate Scholarship from the Irish Research Council and is gratefully
acknowledged.

J. P. L. McGuinness is with the Department of Mathematics, Cork Institute
of Technology, Ireland. (email: j.mcguinness@cit.ie)

G. Thomas is with the Department of Applied Mathematics, University
College Cork, Ireland. (email:g.thomas@ucc.ie)

Within [3], [4], [6], [7], [9], arrays were optimised by
directly maximising the performance of the array, either power
absorbed or interaction factor, with respect to the array layout.
This resulted in arrays which are high performing but also
highly sensitive to small variations in array variables. This
high sensitivity was identified and addressed in [8]. This was
done by setting the objective function of the optimisation to
be the mean of the interaction factor over a certain range of
array variables, which resulted in arrays that performed well
over a broader range of variables and thus were more stable
to small changes in these variables.

One common problem with many of the above works is
the large optimal motion amplitudes that result from un-
constrained array optimisations. These large motions would
cause severe control issues and also invalidate the underlying
linear wave theory, which requires that the motions are small
in some sense. Constrained optimisation of array layouts
was investigated in [12], where the mean of the constrained
performance of the arrays was maximised, with upper limits
on WEC motions of two and three times the wave amplitude.
It was found that there were some cases in which constructive
interference could be stably maintained in the constrained
regime. However this was achieved at a considerably reduced
optimal performance compared to the unconstrained cases. It
should also be noted that the optimal array layouts were altered
by the application of constraints. In general, the inclusion of
constrained motions resulted in more distributed arrangements
when compared to unconstrained optimisations, with the re-
moval of closely spaced groups of WECs for the most part.
Overall, this work showed that the application of constrained
motions resulted in a trade-off between optimal performance
and stability of performance.

The majority of array optimisations involve prescribing an
array geometry. The work presented in this paper extends
previous studies to an array without a prescribed geometry,
thereby allowing optimal arrays to attain any layout, subject
to certain maximum and minimum device separations. The
objective function of the optimisation is defined as the mean
performance of the array over a prescribed range of incident
wave angles. Unlike the objective functions used in [10]–
[12], this is well defined regardless of the array layout. It is
anticipated that this objective function will result in optimal
arrays that are stable to changes in incident wave conditions.

The present approach does not include full interactions
and follows the point-absorber implementation employed in
[1], [3], [4], [8], [9]; the accuracy of this approximation is
discussed in [5]. In this methodology, an external model is
required to determine the device motions and for the chosen
device geometry, the motions can be determined using the
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Havelock theory [14]. A similar optimisation method to that
applied in [10]–[12] is utilised here, albeit with increased
freedom and greater number of optimisation variables.

II. MATHEMATICAL FORMULATION

A. Power Absorption Theory

Consider an array of N semi-submerged spherical point
absorbers of radius a, which operate in heave only. It is
assumed that linear wave theory is applicable and that regular
long-crested waves of amplitude A, frequency ω, wavelength
λ and wavenumber k are incident on the array, in water of
infinite depth with density ρ. The waves are incident at an
angle β, which is measured in an anticlockwise direction from
the positive x-axis. It has been shown by Evans [1] that the
mean power absorbed by an array of N WECs is given by

P
(N)
abs =

1

8
X†B−1X− 1

2

(
U− 1

2
B−1X

)†
B
(
U− 1

2
B−1X

)
,

(1)

where X and U are complex time-independent column vectors
of the exciting forces and velocities of the devices respec-
tively, B is the radiation damping matrix and † denotes
complex conjugate transpose. In this notation, the exciting
force and velocity of body m are given by Re

[
Xme

−iωt] and
Re
[
Ume

−iωt] respectively. The power absorbed is maximised
when

Uopt =
1

2
B−1X, (2)

which gives the maximum power absorbed by the array as

P
(N)
opt =

1

8
X†B−1X. (3)

The device displacement amplitudes are given by the col-
umn vector ξξξ = Re

[
ADe−iωt

]
, such that the column vector

D represents the time-independent WEC displacements non-
dimensionalised with respect to the incident wave amplitude.
These displacements can be related to the device velocities by

U = −iωAD. (4)

The non-dimensional displacements are further separated into
the WEC motion amplitudes and phases as

Dj = δje
iψj , (5)

where δj ≥ 0 and 0 ≤ ψj < 2π.
There is no restriction placed on the geometry of the array,

thus each array member has two variables that describe its
position, with the exception of the first device with is fixed
at the origin, without loss of generality. A cylindrical polar
coordinate system (r, θ, z) is used to describe the position
of each device, with the position of the jth device given by
(r, θ, z) = (dj , αj , 0), where z = 0 corresponds to the water
surface, dj is the distance from the origin to the jth device and
αm is the angle from the origin to the mth device measured
positive in a counter-clockwise direction from the positive x-
axis.

An absolute measure of the power absorption is not ideal
as this does not give an indication of the power absorption

capabilities of a chosen array compared to other arrays or to
an isolated device. Thus the interaction factor is utilised which
gives a measure of the relative performance of an array to the
same number of isolated devices. For unconstrained motions,
the interaction factor, or q-factor, is defined as

q =
P

(N)
opt

NP
(1)
opt

, (6)

where P (1)
opt is the optimal power absorbed by a single isolated

device. In the constrained regime, the averaged interaction
factor q is defined as

q =
P

(N)
abs

NP
(1)
opt

. (7)

B. Point Absorber Approximation

The point absorber theory assumes that the devices are
sufficiently small so that they do not produce a scattered
wave field. The corresponding mathematical assumption is that
ka � 1. It has been shown in [5] that this approximation is
valid for ka ≤ 0.8. A value of ka = 0.4 has been assumed
by previous authors and is applied herein. Thus the far-field
angular dependence of the WECs can be simplified, which
allows the interaction factor to be expressed concisely as

q =
1

N
`̀̀†J−1`̀̀, (8)

while the analogous expression for the averaged interaction
factor is

q =
4π(ka)2

N

(
−Re

[
(D + iC)D†`̀̀

]
− π(ka)2(C2 +D2)D†JD

)
,

(9)
where `̀̀ is an N -component column vector with components
`m = eikdm cos(β−αm), J is an N × N matrix with elements
Jmn = J0 (kdmn) for devices operating in heave and J0(x)
is the zeroth order Bessel function of first kind. In this
notation, dnm is the distance between the nth and mth devices.
The constants C and D are called the Havelock coefficients.
These are obtained as described in [14] and depend on the
non-dimensional radius of the devices ka, which is fixed to
ka = 0.4 throughout this work. Therefore, q is a function of
the non-dimensional positions of the WECs (via kdm, kdmn
and αm) and of the incident wave angle β, while q is further
dependent on the WEC displacements.

An important consistency relation was derived for the q-
factor by [9] and reported in [6], where it was shown, within
the point absorber regime for a single mode of motion, that

1

2π

∫ 2π

0

q(β) dβ = 1. (10)

This is an important relation in this context, as it provides
a limit on what can be achieved in terms of a wave angle
optimisation of an array layout. It can also be shown that a
symmetry in the interaction factor with respect to the incident
wave angle exists and is

q(β) = q(β + π). (11)
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C. Optimisation Method

In the case of a non-prescribed geometry and a general 2D
optimisation, the coordinates of all but the first device (which
is fixed at the origin) are fed into the optimisation as variables;
the non-dimensional coordinates utilised are (kdj , αj). The
objective function for an unconstrained array is defined as

Iβ(kd,ααα) =
1

βu − βl

∫ βu

βl

q(kd,ααα, β) dβ, (12)

where kd and ααα are N−1 component vectors whose elements
contain the kdj and αj variables respectively. In an attempt
to limit the search space of the optimisation and to restrict the
array layout to a reasonable area, limits of 1 ≤ kdj ≤ 20
and 0 ≤ αj ≤ π are imposed for j = 2, . . . , N . These
constrain the area of the array to within a semicircle in the
upper half plane of radius 20, without loss of generality.
To minimise calculation difficulties and to retain physical
consistency, a further limit on the non-dimensional separation
distance between any two WECs was also enforced such that
1 ≤ kdnm ≤ 40, which is consistent with the constraint
on kdj . A minimum separation of unity between any two
WECs was enforced in order to avoid touching WECs and
also to avoid numerical difficulties associated with small WEC
separations.

A constrained objective function is also considered, where
device motion amplitudes are limited to an upper value and
the interaction factor q replaced by the averaged interaction
factor q. Therefore, the constrained version of the objective
function is given by

Iβ(kd,ααα,δδδ,ψψψ) =
1

βu − βl

∫ βu

βl

q(kd,ααα,δδδ,ψψψ, β) dβ, (13)

where δδδ and ψψψ are N -component vectors containing the
displacement amplitude and phase variables respectively. For
numerical implementation purposes, the displacement ampli-
tude variable is reparameterised such that

Dj = δ̃je
iψj , (14)

where δ̃j can take both positive or negative values and
0 ≤ ψj < π. It was found that the δ̃j variables were better
behaved than the ψj variables in terms of convergence of the
optimisation. The displacements are implemented in this man-
ner to improve the numerical optimisation, by increasing the
range of δ̃j and decreasing the range of ψj . Thus, the ranges of
the displacement variables enforced are −δmax ≤ δ̃j ≤ δmax
and 0 ≤ ψj ≤ π.

There should be no need to examine different target values
of incident wave angle, since it is clear that if an optimal
array is found for one wave angle range, then a different target
range should simply produce a rotation of the original optimal
layout. Therefore, rather than examining different target wave
angles, several range lengths are instead considered with the
mid-point of each range remaining the same. For convenience,
the target wave angle is assumed to be β = π

2 and the
optimisation ranges are taken to have variations of ± π

16 , ±
π
8

and ±π4 . Thus the corresponding optimisation ranges inves-
tigated are β0 ∈ [ 7π16 ,

9π
16 ], [

3π
8 ,

5π
8 ] and [π4 ,

3π
4 ] which will

be referred to as narrow, intermediate and broad-banded β-
variation ranges respectively.

For unconstrained optimisations of this type, the optimi-
sation contains 2(N − 1) variables, corresponding to the
radial and angular positions of each WEC when WEC 1
is fixed at the origin. The constrained optimisations contain
an additional 2N variables, comprising of the displacement
amplitudes and phases of each WEC, resulting in a total of
4N−2 optimisation variables. In order to keep the optimisation
feasible from a numerical perspective and to allow comparison
with previous studies on linear arrays, an array of five WECs
is examined in this paper. This results in eight optimisation
variables for unconstrained motions and eighteen variables for
the constrained optimisation.

Numerical calculations were performed on a Dell
Latitude E6330 running Windows 7 with 8GB of
RAM and an Intel Core i3-3130M (2.6GHz) processor.
The optimisation routine chosen to find the maximum
of objective functions is NAG routine E04UCF
(https://www.nag.co.uk/numeric/fl/manual/pdf/E04/e04ucf.pdf),
with appropriate algorithms employed for the calculation
of Bessel functions, matrix inversion and quadrature. This
algorithm searches for the minimum value of the objective
function using a sequential quadratic programming method.
In order to find the maximum rather than the minimum, the
negative of the objective function is supplied to the algorithm.
A starting point is required as input to the optimisation
algorithm. The algorithm initially uses the gradient of the
objective function at this point to define a search direction,
with the step size chosen such that a sufficient decrease in a
Lagrangian type merit function is achieved. This procedure is
repeated until an optimum is found. The algorithm E04UCF
is essentially identical to the subroutine NPSOL as described
by [15].

Optimisations of this type require an exhaustive search over
the possible starting points of the variables, which results in a
considerable demand on computational resources. For the un-
constrained optimisation, all possible combinations of starting
points with kdj = {4, 8, 12, 16, 20} and αj = {0, π5 , . . . , π}
for j = 2, . . . , 5 were investigated, with combinations in-
volving coincident devices forbidden. This involved a total
of approximately 225,000 iterations in the optimisation, hence
the large computation time of typically between five and ten
hours for the unconstrained optimisation. The results of this
scan of staring points were encouraging, as in each case the
optimisation routine repeatedly converged to a single optimal
solution, to an analogous one by symmetry or to one obtained
by interchanging the WECs, indicating the stability of the
optimisation and confirming the optimality of the solution.

The aspect of computation time is more severe for con-
strained motions, where an extra ten displacement variables
must be scanned over. However, as discussed in [8], these
displacement variables converged much better than the po-
sition variables, which allowed a more sparse scan of the
stating point space to be implemented for these variables.
Thus, the starting point space for constrained motions was
kdj = {5, 10, 15, 20}, αj = {0, π4 , . . . , π} for j = 2, . . . , 5

and δ̃n = {−3, 0, 3}, ψn = {0, π2 } for n = 1, . . . , 5, with com-
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TABLE I
OPTIMAL POSITION VARIABLES FOR THE GENERAL 2D UNCONSTRAINED FIVE-DEVICE ARRAY

[βl, βu] kd2 kd3 kd4 kd5 α2 α3 α4 α5 Iβ

[ 7π
16
, 9π
16

] 8.8663 4.2112 4.7345 9.2854 0.0840 0.0000 0.1911 0.1842 1.9451

[ 3π
8
, 5π

8
] 8.8717 4.4099 8.4211 3.9625 2.9222 2.9272 3.0256 3.1416 1.7744

[π
4
, 3π

4
] 7.1035 3.4967 7.1750 3.6061 3.1416 3.1416 3.0018 2.8608 1.4466

binations involving coincident WECs excluded. This resulted
in approximately 185,000 calls of the optimisation routine,
which is slightly less than the unconstrained optimisation.
However, the optimisation had greater difficultly converging
to the optimal set of variables and was required to make more
steps within the minimisation process, thus making more calls
to the objective function. This increased the computational
effort significantly, resulting in run times of approximately 20
hours.

The optimisation results for constrained motions cannot be
considered as reliable as those for unconstrained motions,
as the optimisation routine did not converge repeatedly to
the best set of variables found for an appropriate number
of runs. Most cases resulted in the optimisation converging
to the same optimal result approximately 100 times but in
some cases the optimal solution was converged to only on
three occasions. Thus the constrained optimisation is not as
stable as the unconstrained version. Therefore, the results
for the constrained arrays are not presented as optimal with
confidence, but rather the best case found by the optimisation
within a reasonable calculation time.

III. OPTIMISATION RESULTS

This section presents the results of both the constrained
and unconstrained β-optimisation of general two-dimensional
five-WEC arrays. The best performing array variables and the
resulting objective function values are listed in tables and the
results discussed. It is worth noting that a value of αj = 0
or αj = π ≈ 3.1416 indicates that a WEC is placed on the
x-axis, while a value of αj = π

2 ≈ 1.5708 would indicate that
the device is placed on the y-axis. A detailed analysis of each
optimal array is provided in Section IV.

A. Unconstrained Motions

The optimisation results for the unconstrained optimisation
are shown in Table I for each of the ranges of incident wave
angle considered. It is clear that better performance is achieved
in the case of narrower wave angle ranges. This is to be
expected, even when optimal motions are enforced for all wave
angles, since the performance of an array with respect to β is
limited by (10). Thus, better performance can be achieved by
contriving the array to perform well in a small β-range, since
poor performance outside this range is of no concern. For
broader β-ranges, (10) limits overall performance and results
in lower objective function values.

As a consequence, the best performing array was for the
narrow β-variation (β ∈ [ 7π16 ,

9π
16 ]), where very high mean

-10 -5 5 10
kx

1

2

3

4

5

ky

Narrow-banded Intermediate-banded Broad-banded

Fig. 1. Diagram of optimal unconstrained arrays for each range of incident
wave angle

performance of Iβ = 1.9451 was achieved. The intermediate
and broad wave angle ranges resulted in a mean performance
drop of approximately 9% and 26% respectively relative to
the narrow-banded case. As expected, the poorest performing
array is for the broad-banded variation, where a mean perfor-
mance of Iβ = 1.4466 was achieved.

A schematic showing the optimal array layouts for the
unconstrained optimisation is presented in Fig. 1. It is clear
that the optimal layouts are similar for each range of incident
wave angle considered. In each case, the WECs are located
close to the x-axis in two closely spaced pairs, where the lower
limit of kdnm = 1 has been encountered. The narrow-banded
optimal array is more spread out from the origin, whereas the
broad-banded layout is closer to the origin. For the narrow-
banded case, the WECs are positioned to the right of the origin,
while the WECs are located to the left for the intermediate-
and broad-banded cases. This is probably due to the numerical
optimisation arbitrarily converging to one orientation or the
other, since the arrays will perform analogously if reflected
about the y-axis via equation (11).

B. Constrained Motions

Two displacement amplitude limits are considered in the
constrained optimisation, with the displacements limited to
two or three times the incident wave amplitude. Tables II and
III show the optimisation results for both constraints for all
incident wave angle ranges considered. As a consequence of
the large number of variables to be presented, the optimal
WEC position variables are given in Table II, while the optimal
displacement variables corresponding to the same arrays are
displayed in Table III.

As with the unconstrained motions, the best performance is
seen for the narrower ranges of β. The array with the highest
optimal value of Iβ = 1.2137 is the one optimised over the
narrow-banded range of β with the constraint δmax = 3.
This indicates that, despite the motion constraint applied to
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TABLE II
OPTIMAL POSITION VARIABLES FOR THE GENERAL 2D CONSTRAINED FIVE-DEVICE ARRAY

[βl, βu] δmax kd2 kd3 kd4 kd5 α2 α3 α4 α5 Iβ

[ 7π
16
, 9π
16

] 3 3.2631 2.9228 3.4293 1.8838 2.4752 2.9546 0.0000 0.9289 1.2137
2 3.4037 2.9600 3.3490 1.9423 3.1416 0.2224 0.7160 2.1902 0.9293

[ 3π
8
, 5π

8
] 3 5.2541 5.2541 2.5260 2.5260 1.2300 1.9116 0.1224 3.0192 1.0574

2 5.3703 2.4178 5.3703 2.4178 1.8954 2.9652 1.2462 0.1764 0.8363

[π
4
, 3π

4
] 3 2.0031 2.3468 2.3468 2.0031 0.1996 0.9252 2.2164 2.9420 0.7085

2 1.9465 2.4384 1.9465 5.1714 2.7676 1.5708 0.3740 1.5708 0.6350

TABLE III
OPTIMAL DISPLACEMENT VARIABLES FOR THE CORRESPONDING GENERAL 2-D CONSTRAINED FIVE-DEVICE ARRAYS IN TABLE II

[βl, βu] δmax δ̃1 δ̃2 δ̃3 δ̃4 δ̃5 ψ1 ψ2 ψ3 ψ4 ψ5

[ 7π
16
, 9π
16

] 3 -3.0000 3.0000 -3.0000 -3.0000 -3.0000 1.7660 0.7140 2.1235 1.6480 3.1416
2 -2.0000 -2.0000 -2.0000 2.0000 2.0000 1.7927 1.6695 2.2991 0.8278 0.1598

[ 3π
8
, 5π

8
] 3 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 1.6092 0.4051 0.4051 1.9592 1.9592

2 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 1.6721 0.4837 2.0958 0.4837 2.0958

[π
4
, 3π

4
] 3 -2.2652 -3.0000 3.0000 3.0000 -3.0000 1.3953 2.1598 0.3995 0.3995 2.1598

2 -2.0000 -2.0000 2.0000 -2.0000 -2.0000 1.4044 2.4292 0.7421 2.4292 0.4403

the WECs, constructive interaction is maintained. The same is
true for the intermediate-banded optimal array with δmax = 3,
where Iβ = 1.0574 is achieved. Although this performance is
lower, constructive interaction still dominates.

Significantly reduced performance is seen for the lower
constraint of δmax = 2 in comparison to δmax = 3, as
expected. In each case, the δmax = 2 arrays result in a
reduction of between 10% to 25% compared with analogous
δmax = 3 arrays. No array with this lower constraint achieved
Iβ ≥ 1, indicating that this constraint is more restrictive and
destructive interference dominates. However, for the narrow-
banded array, Iβ = 0.9293 is achieved, which is only slightly
lower than unity, indicating that modest performance is main-
tained.

In general, arrays optimised over larger ranges of β return
lower objective function values. For a small incident wave
angle range, it is possible to tune the WECs to perform well
for the conditions. However, for broader ranges, this is not
possible as the same tuning cannot be done over all of this
broader range of angles. Although equation (10) does not
apply to constrained motions, the same argument can be made
whereby the array cannot perform well at all angles, hence the
lower performance for broader β ranges.

For constrained motions, it does not appear that any of
the WEC position variables reached either limit on kdj or
kdnm, indicating that no WEC is within close proximity to
another. This is in line with the results of [12], where in
general applying constraints on WEC motions resulted in more
spread-out arrangements, with no grouped WECs.

It is clear from Table III that all WECs reached the maxi-
mum allowed amplitude constraint of δmax = 2 or δmax = 3
for each optimal array, with the exception of the broad-banded
δmax = 3 array. This indicates that the WECs are working
equally hard in each of these arrays and absorb the same

amount of energy. In the narrow-banded optimal arrays, the
WECs have different phases to each other. However, in the
intermediate and broad-banded optimal arrays, at least one pair
of WECs operate at the same phase. This is due to symmetry
in the optimal layout, as will be considered in Section IV.

In the broad-banded δmax = 3 case, the motion amplitude of
WEC 1 does not reach its maximum allowed value, unlike all
other optimal constrained arrays. This indicates that reduced
amplitude of this WEC somehow increases the mean perfor-
mance with respect to β-variation. It may be that this reduces
the peak performance slightly but improves the β-sensitivity
of this optimal array, thus allowing the array to perform its
best over the entire range of β ∈ [π4 ,

3π
4 ].

IV. ANALYSIS OF OPTIMAL ARRAYS

In this section, the optimal arrays found in Section III
are analysed in more detail. For convenience, the analysis is
conducted by the range of incident wave angle considered.
Thus all constrained and unconstrained narrow-banded arrays
are analysed in Section IV-A, similarly for intermediate-
banded arrays in Section IV-B and broad-banded arrays in
Section IV-C. In each case, a diagram of the optimal con-
strained and unconstrained array layouts is presented. The
performance of each array with respect to β-variation and
wavenumber variation is also assessed. Finally, the optimal
WEC displacement amplitudes for the unconstrained array are
presented and analysed.

A. Narrow-Banded β ∈ [ 7π16 ,
9π
16 ]

A diagram of the optimal constrained and unconstrained
narrow-banded optimal arrays is shown in Fig. 2. It is clear
that an appreciably different layout is found for each of the
different displacement limits. The unconstrained array results
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Fig. 2. Diagram of optimal arrays for narrow-banded range of incident wave
angle β ∈ [ 7π
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Fig. 3. Interaction factor against incident wave angle β for optimal con-
strained and unconstrained five-WEC arrays, optimised for β ∈ [ 7π

16
, 9π
16

].
The target range of wave angles is indicated by the vertical dashed lines.

in two pairs of closely-spaced WECs separated to the right of
the origin. The separation between each of these pairs and the
origin is approximately 4.5 units, while the paired WECs are
placed as close to each other as allowed by the optimisation,
with a unitary separation between them. The two constrained
arrays are more central and contained within five units of the
origin, with two WECs either side of the y-axis. Initially it
would appear that the δmax = 2 and δmax = 3 constraints
result in considerably different optimal layouts. However, an
examination of both arrays shows that they are almost mirror
images of each other about the y-axis. This suggests that the
mirror arrangement of each array is analogously optimal for
the given constraint but that the optimisation routine arbitrarily
converged to the different symmetries in each case.

The performance of the optimal arrays with respect to β-
variation is shown in Fig. 3. It is clear that each array is forced
to perform best within the range of interest β ∈ [ 7π16 ,

9π
16 ],

since the performance of each array peaks in this range.
The unconstrained array maintains a high interaction factor
with q ∈ [1.7, 2.1] within the range of interest. The two
constrained arrays show a considerably reduced performance
and return averaged interaction factors of the order of half of
the unconstrained case. However, constructive interference is
maintained in the δmax = 3 case, with q ∈ [1.1, 1.3] for all
β ∈ [ 7π16 ,

9π
16 ]. Even though this is not the case for δmax = 2,

adequate performance is maintained with q ∈ [0.85, 1.0].
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Fig. 4. Interaction factor against wavenumber k
kopt

for optimal narrow-
banded constrained and unconstrained five-WEC arrays, with β = π
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Fig. 5. Optimal displacement amplitudes against incident wave angle for
optimal unconstrained five-WEC array, optimised for β ∈ [ 7π

16
, 9π
16

] (shown
by vertical dashed lines)

The influence of wavenumber variation on each optimal
narrow-banded array is shown in Fig. 4. The unconstrained
optimal array maintains q > 1 for up to a 50% variation
about kopt. The application of constraints causes a reduction
in performance for the upper constraint, with constructive in-
terference maintained for k

kopt
∈ [0.75, 1.4], indicating that at

least a 25% change in k is required to move from constructive
to destructive interference. Due to the lower constraint having
a greater effect on performance, q < 1 holds for all values
of k

kopt
considered. Each array is relatively stable overall to

changes in wavenumber, with a small relative change in k
producing only a small change in q or q. It is noteworthy that
the peaks in Fig. 4 occur at values slightly above k

kopt
= 1.

Finally, the predicted optimal WEC displacement ampli-
tudes for the unconstrained array are shown in Fig. 5. It is clear
that there is a correlation between the peak in performance in
Fig. 3 and the peaks in WEC displacements in Fig. 5. The
paired devices (WECs 2 - 5) exhibit larger motions than the
relatively isolated WEC at the origin. However, all WECs have
δ > 4 within the range of interest β ∈ [ 7π16 ,

9π
16 ] and so violate
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Fig. 6. Diagram of optimal arrays for intermediate-banded range of incident
wave angle β ∈ [ 3π

8
, 5π

8
]

Π

8

Π

4

3 Π

8

Π

2

5 Π

8

3 Π

4

7 Π

8
Π

Β

-0.5

0.5

1.0

1.5

2.0

q, q

qHÈ∆È<¥L qHÈ∆È£3L qHÈ∆È£2L

Fig. 7. Interaction factor against incident wave angle β for optimal con-
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8
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The target range of wave angles is indicated by the vertical dashed lines.

the O(1) requirement of the model.

B. Intermediate-Banded β ∈ [ 3π8 ,
5π
8 ]

A schematic of the optimal array layouts for intermediate-
banded β-ranges is shown in Fig. 6 for constrained and
unconstrained motions. A similar optimal unconstrained layout
to the narrow-banded case is found, with all WECs on the left
of the origin rather than the right. Again, this contains two
closely spaced pairs of WECs with unitary separation. The
pairs have a separation of approximately four units between
them and the isolated WEC at the origin. For both constrained
arrays, an almost identical layout is found to be optimal, which
is also symmetric about the y-axis.

The behaviour of the constrained and unconstrained optimal
arrays to variation in incident wave angle is shown in Fig. 7.
As with the narrow-banded case, the unconstrained array main-
tains constructive interference within the range of interest, with
q ∈ [1.35, 2.05] for β ∈ [ 3π8 ,

5π
8 ]. The constrained arrays have

reduced performance compared to the unconstrained case;
in each constrained case destructive interference is present
within the range of interest. The upper constraint resulted in
q ∈ [0.75, 1.25] for β ∈ [ 3π8 ,

5π
8 ], whereas the lower constraint

resulted in q ∈ [0.6, 0.95]. In contrast to the narrow-banded
case, it is clear that a reduced performance occurs within the
range of interest.
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Fig. 8. Interaction factor against wavenumber k
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for optimal constrained

and unconstrained five-WEC arrays, optimised for β ∈ [ 3π
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Fig. 9. Optimal displacement amplitudes against incident wave angle for
optimal unconstrained five-WEC array, optimised for β ∈ [ 3π

8
, 5π

8
] (shown

by vertical dashed lines)

The influence of wavenumber variations on the
intermediate-banded optimal arrays is shown in Fig. 8.
The unconstrained array maintains good performance for up
to a 50% change in k, with q > 1.2 for all values considered.
Note that the peak in performance is achieved at k

kopt
≈ 1.06,

not k
kopt

= 1 as expected. A reduced performance and an
increased sensitivity is seen for the constrained arrays. The
lower constraint possesses destructive interference for all
wavenumbers considered, with a 30% change in k resulting
in a 50% drop in q. Constructive interference with q > 1
is seen for the upper constraint for k

kopt
∈ [0.85, 1.15]. This

indicates that a 15% change in wavenumber results in a
destructive interference. Note also that a 40% change in k for
the upper constraint results in negative q values, indicating
that the array is injecting power into the water rather than
absorbing it.

The displacement amplitudes for the optimal unconstrained
intermediate-banded array are presented in Fig. 9. This once
more shows that the WEC displacements are largest for range
of interest and so have a strong correlation with the high q-
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Fig. 10. Diagram of optimal arrays for broad-banded range of incident wave
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Fig. 11. Interaction factor against incident wave angle β for optimal
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4
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The target range of wave angles is indicated by the vertical dashed lines.

factor values in Fig. 7. As with the narrow-banded regime,
the largest motions are seen for the paired WECs. All five
WECs exhibit δ > 4 and so violate the O(1) requirement of
the model.

C. Broad-Banded β ∈ [π4 ,
3π
4 ]

The optimal broad-banded array layouts for constrained
and unconstrained motions are shown in Fig. 10. The uncon-
strained array layout is similar to the intermediate-banded case,
with two closely spaced pairs of WECs separated to the right
of the origin. Each pair had a separation of approximately 3.5
units between them and from WEC 1. Both the constrained
arrays have a symmetric layout about the y-axis. In the
δmax = 3 case, this is comprised by two WECs on each side
of the y-axis. However, in the δmax = 2 case, there is one
WEC on each side of the y-axis, while 2 WECs are placed
along the y-axis and separated by approximately 2.5 units.

The behaviour of the optimal broad-banded arrays with β-
variation is shown in Fig. 11. As with previous cases, the
peak in performance occurs at or near the centre of the range
of interest β ∈ [π4 ,

3π
4 ]. Even in the unconstrained case,

constructive interference is not maintained over the entirety
of this range, since q < 1 at the edges of β ∈ [π4 ,

3π
4 ].

As expected, the constrained cases have a much reduced
performance in comparison to the unconstrained case. The
upper constraint of δmax = 3 achieves q > 1 for a relatively
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Fig. 12. Interaction factor against wavenumber k
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for optimal constrained

and unconstrained five-WEC arrays, optimised for β ∈ [π
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Fig. 13. Optimal displacement amplitudes against incident wave angle for
optimal unconstrained five-WEC array, optimised for β ∈ [π

4
, 3π

4
] (shown by

vertical dashed lines)

small range of β ∈ [ 7π16 ,
9π
16 ], with quite poor performance

seen outside of this range. The δmax = 2 performance varies
slightly slower but destructive interference dominates with
q < 1 for the entire range of interest.

The effect of variation of the wavenumber k
kopt

on the
optimal broad-banded array performance is shown in Fig. 12.
Once more, the unconstrained array maintains a q > 1 per-
formance for a 50% change in wavenumber but considerably
lower performance is seen for the constrained arrays. The
δmax = 3 array achieves q > 1 for k

kopt
∈ [0.9, 1.26], whereas

the δmax = 2 array has q ≤ 0.8 for all values considered.
As in the narrow and intermediate-banded case, the peaks in
Fig. 12 occur slightly away from k

kopt
= 1 for all three arrays.

The unconstrained array performance peaks at k
kopt

≈ 1.25,
while the δmax = 3 array performance peaks at k

kopt
≈ 1.08.

Interestingly, the δmax = 2 array peaks at k
kopt
≈ 0.95; this is

the only case where the peak in performance with respect to
wavenumber occurs at a value less than unity.

The optimal WEC displacement amplitudes for the uncon-
strained broad-banded array are presented in Fig. 13. As with
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narrow and intermediate-banded arrays, the motions of the
paired devices (WECs 2 - 5) are larger than those for the
isolated device (WEC 1). However, as with previous cases,
all WECs maintain δ > 4 for the majority the range of
interest β ∈ [π4 ,

3π
4 ]. These WEC motions violate the O(1)

requirement and so would invalidate the underlying linear
wave theory.

V. DISCUSSION OF RESULTS

This paper extends previous studies by considering the β-
optimisation of general five-WEC arrays, without any pre-
scribed geometry. This allows for a robust general layout
optimisation and is the first time non-prescribed geometries are
considered in this context. One difficulty with this increased
generality is the associated increase in computational resources
required for the optimisation, which limits the scope of inves-
tigations of this type. Utilising other optimisation routines,
such as Genetic Algorithms, may decrease the run-time of the
optimisation. However, this would also yield less knowledge
of the evolution and reliability of the results due to the ”black-
box” nature of such algorithms.

The optimal objective function values obtained in this paper
are in general greater than the analogous results for linear
arrays in [10], [12]. Better performing arrays are determined
due to the increased freedom within the optimisation, as the
WECs are not forced to lie on a straight line. It is also
worth noting that although the WEC displacements of the
unconstrained optimal arrays presented in this paper violate the
O(1) requirement, they are two orders of magnitude smaller
than the optimal linear array displacements from [10], [11].

It is clear that the optimal layouts obtained by the op-
timisation differ considerably depending on the range of
wave angles permitted and the applied motion constraint. The
unconstrained array layouts were all similar, with two pairs
of closely-spaced WECs placed to one side of the y-axis.
The optimal unconstrained narrow-banded array was placed to
the right of the y-axis, while the analogous intermediate and
broad-banded arrays were placed to the left. From considera-
tions of symmetry, arrays mirrored about the y-axis perform
the same and it is just a numerical artefact that the narrow-
banded array resulted in WECs to the right instead of the
left. It should also be noted that the WEC pairs are situated
closer to the origin for broader β-ranges. In either case, the
optimal unconstrained array is quite similar to two rows of
linear WECs; it would be interesting to see what the optimal
layout would be if say ten WECs were considered. However,
this is numerically intractable due to the parameter explosion
of including more WECs in the array.

The range of incident wave angle had a large impact
on the optimal constrained array layouts, with noticeably
different arrangements discovered in the constrained cases.
For intermediate and broad-banded β-variation, the optimal
constrained arrays were symmetric about the y-axis. This
may seem expected, since the wave angle range considered
is centred on β = π

2 and is also symmetric about the y-
axis. This is in direct contrast to the optimal unconstrained
layouts, which were placed to one side of the y-axis. In the

narrow-banded case, asymmetric layouts were obtained as the
best cases and the array found for each constraint were mirror
reflections of each other about the y-axis.

Lower overall array performance was seen for the broader
β-ranges, for both constrained and unconstrained motions.
This is to be expected, since there are limitations on how well
an array can perform constructively. For example, it is well
known for unconstrained motions that the mean interaction
factor over all wave angles is unity, as shown by [9]. A
similar limitation would apply to constrained motions whereby
the array cannot be forced to perform exceptionally well
for a broad range of wave angles. Good performance can
be achieved and maintained if a relatively small β-range
is considered, as shown for the narrow-banded constrained
arrays.

The trade-off identified previously in [12] between optimal
performance and stability of performance is clearly shown in
this paper for β-variation. If a broad-banded range of incident
wave angle is the range of optimisation, this essentially
requires that the array perform as well as possible over the
entirety of this range of β. It is seen that broader ranges of
β produce lower objective function values and hence lower
overall performance. However, another trade-off for linear
arrays identified in [12] between β-stability and k-stability
is not evidently observed in the results of this work. The
k
kopt

curves are relatively stable and broadly similar for all
ranges of β considered. This suggests that this phenomenon
was connected primarily with linear arrays and that optimising
in a general two dimensional regime ameliorates this pitfall.

The best array performance is seen for the narrow-banded
optimisation, where the range of interest is β ∈ [ 7π16 ,

9π
16 ].

Even for the δmax = 3 constraint, constructive interference
was maintained throughout this range. Performance was also
relatively stable to changes in wavenumber, with q > 1 being
maintained for up to a 25% change in k. Thus, if a site is
identified with a relatively low variation in both β and k,
which remain within the above limits, then this array may
be an ideal choice.

In a preliminary study, the optimisation was tested at other
wave angle ranges, before those targeting β = π

2 were chosen.
In some cases, it was noted that a slightly better or a poorer
optimal result was obtained at other wave angles, such as those
centred on β = 0. This improvement or deterioration was
less than 1%. In principle, the optimisation should be able
to find the same array in both cases, due to symmetry. The
optimal array at one angle should just be the rotation of the
optimal array at a different angle. However, the same array
may not be able to be found at other rotated angles due to the
limits imposed on the variables. A rotation of π

2 may cause
one of the WECs to be placed outside kdj ∈ [1, 20] ∪ αj ∈
[0, π]. Another possible explanation for this discrepancy is the
large number of variables and the large size of the parameter
space, particularly for the constrained optimisations. It may
be that the optimisation failed to converge to the same results
at different wave angles due the numerical intensity of the
calculations, or some numerical difficulty at certain values of
β. These problems cannot be avoided without a significant
increase in the variable space within the optimisation. This
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would not only increase the space over which the optimisation
must converge but also increase the starting point space for
the WEC position variables, which would significantly reduce
the performance of the optimisation routine. Thus the optimal
arrays in this paper are not advertised as globally optimal,
but are the best cases found within the computational limits
present.

In some cases, the peak in q against k
kopt

occurred at a
value other than k

kopt
= 1. This suggests that an increased

performance could be achieved by having the non-dimensional
radial positions of the WECs (kdj) slightly larger or smaller.
However, given that the optimisation routine did not converge
to such a case, this suggests that the increased performance
at the larger/smaller kdj values also gives an increased β-
sensitivity and poorer performance over the range of interest
of β, as this was the main consideration within the objective
function. It also points towards the possible trade-off between
stability in some array variables and sensitivity to others.
However, the effect is very slight, as the peaks in k

kopt
occurred

very close to unity in all cases.
In many physical array sites, the variation of incident wave

angle will not be uniform about a given range. In most
cases, there is a spectral behaviour where most of the wave
would come from a range of angles, with decreased resource
from angles outside this range. To assess the effect of this
concentration of the resource, an alteration of the objective
function is proposed, where a weighting function is included
in the integral. The weighting function must be normalised to
maintain consistency. This type of optimisation would give a
more detailed idea of the effect of β-variation, as spectrum
variability is incorporated in this implementation in some
sense. Since regular waves and ideal power absorption are
still assumed in the unconstrained optimisation, this objective
function would essentially assume that ideal power is absorbed
at all wave angles.
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