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Abstract—The undulating membrane tidal energy con-
verter is a device that uses the flutter instabilities occurring
from the interaction between a slender body and a fluid
flow. A new numerical model has been developed using
a 2D corotational finite element method to represent the
structure and the unsteady point-vortex method to compute
the flow. These methods as well as the interaction process
are presented. Trajectory and frequency of the undulating
motion, hydrodynamic forces on the structure and velocity
field in the wake are presented. Comparison shows a good
agreement with experimental results obtained from a 1/20th

scale prototype without power take off tested in flume tank.

Index Terms—Fluid Structure Interaction, Tidal Energy
Converter, Undulating Membrane, Vortex method, Co-
rotationnal finite elements.

I. INTRODUCTION

INTERACTIONS between a semi-rigid membrane
and a fluid flow above a certain current speed

result in a periodic motion on a given wavemode
with an associated frequency. This minimal current
speed at which the membrane starts to undulate is
called ”critical flow speed”. The membrane is pre-
stressed by lateral cables that buckle it in order to lower
the critical speed. Undulating membrane tidal energy
converters use the undulating motion to convert tidal
kinetic energy into electricity trough linear generators
(Fig. 1). The dynamic deformation of the membrane
activate electromechanical linear generators placed in
the central line. They slow down the motion while
converting deformation energy into electrical potential.
Transverse rigid bars ensure a 2D motion and transmit
forces from the membrane to the generators.

A fluid-structure interaction numerical model is de-
veloped in order to study this device. It follows the
development of a 1/20th scale experimental model
[1] and a linear analytical model [2]. The purpose
of the numerical model is to represent accurately the
membrane motion, the flow around it, and the hydro-
dynamic forces on the structure. It should also simulate
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the flow in the wake and must be adaptable to three
dimensions for a future side effects study. The fluid
model is presented in section II-A. It uses the unsteady
point-vortex method [3] to calculate the flow loading
on the structure. The position of the membrane is eval-
uated with the co-rotational finite element method [4]
detailed in section II-B. The interaction process is then
explained in section II-C. It uses an implicit partitioned
approach [5]. Results in term of structure behavior and
flow properties are then analyzed in section III. The
first comparisons with experimental results from [1]
enable to validate these numerical developments.

Fig. 1. CAD representation of an undulating membrane tidal energy
converter.

II. NUMERICAL MODEL PRESENTATION

A. Unsteady point-vortex method

The flow model is based on an unsteady point-vortex
method. It uses a rotational formulation of the Navier-
Stokes equation, which is discretized and solved in
a lagrangian framework. The unsteady point-vortex
method is a specific application of the panel method,
which have been introduced for the first time in fluid
dynamics by Rosenhead [6]. A review of the vortex
methods can be found in Leonard [7]. This method
gives good results for estimation of hydrodynamic
forces and flow field in the wake. Moreover, vortex
methods are reputed to be accurate and to require
little computation time in 2D. Therefore, it is used in
various fluid mechanics domains as animal locomotion
modelization or aerodynamic flight [3]. This model is
also used in marine renewable energy simulations by
[8] and [9].

The velocity-vorticity formulation of the Navier-
Stokes equation governing an incompressible fluid is
given by Eq. (1), with: ω = ∇ ∧ u the vorticity, ∇ the
gradient operator, u the velocity field, t the time and
ν the fluid kinematic viscosity.

∂ω

∂t
+ (u.∇)ω = ν∇2ω (1)
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The Helmholtz decomposition of the velocity field is
used to decompose the velocity vector into a sum of
rotational and irrotational flows (Eq. (2), where φ is the
scalar potential and ψ is the vector potential).

u = u∞ +∇φ+∇∧ ψ = u∞ + uφ + uω (2)

The flow field u is decomposed into three compo-
nents:
• A constant flow u∞, corresponding to the up-

stream flow.
• A potential flow uφ, representing the influence of

the structure on the flow.
• A rotational flow uω in the wake.
The vorticity field ω is discretized at time t in

singular vorticity elements. Circulation is calculated
along the structure, as point-vortices bound to the
membrane. Particles carrying vorticity are also emitted
at the trailing edge and conveyed in the wake (Fig.
2). They are generated so that Kelvin’s theorem is
respected.

Fig. 2. Drawing of the system’s numerical model.

Upper case notation is used in the following for
discrete variables and lower case for continuous vari-
ables. The velocity induced by a vortex is obtained
by the two-dimensional Biot-Savart law. Flow velocity
U in a position X = (x, y) is then the sum of the
upstream velocity, of the velocity Uφ induced by the
bound vortices along the membrane and of the velocity
Uω induced by the vortices emitted in the wake (Eq.
(3)). Γi is the circulation of the ith bound vortex and
Xbi is its position, whereas circulation and position of
vortices in the wake are noted Γwi and Xwi . N is the
number of bound vortices and Nw is the number of
vortices modelled in the wake. The ⊥ symbol indicates
a +π/2 rotation.

U(X) = U∞ +

N∑
i=1

Γi
2π

(X− Xbi )⊥

|X− Xvi |2
+

Nw∑
i=1

Γwi
2π

(X− Xwi )⊥

|X− Xwi |2
(3)

The system is solved along the structure, where
the normal component of flow speed is equal to the
structure speed. This leads to Eq. (4), where Xci is a
position on the membrane, the dot represent the time
derivative and ni is the local membrane normal unity
vector.

U(Xci ).ni = Ẋ
c

i .ni (4)

The problem is expressed by the matrix linear equa-
tion (5). α is the influence coefficient matrix, of which
each element represents the influence of vortex j on

control point i (Eq. (6), where τ i is the local mem-
brane tangent unity vector). Γ is the bound vortices
circulation vector and H the right-hand-side vector
establishing the interface condition and calculated by
Eq. (7), where Uw is the wake-induced flow speed.

[α]Γ = H (5)

αij =
1

2π

(Xbj − Xci ).τ (i)

|Xbj − Xci |2
(6)

H = (Ẋ
c
−U∞ −Uw).n (7)

On every panel the vortex position Xb is placed
at a quarter of the panel length, whereas the control
point Xc, where the system is solved, is placed at three
quarter of the panel length. This ensure implicitly the
Kutta condition.

Wake vortices are initially placed at a distance
0.25.U∞.∆t downstream of the trailing edge’s position.
Then the model computes the local flow speed at
each particle’s location and moves the wake vortices
accordingly.

Once the vortices circulation is calculated by mul-
tiplying the inverse of the influence coefficient matrix
α and the vector H (Eq. (5)), the pressure difference
across the structure can be calculated by Eq. (8) and
the hydrodynamic forces by Eq. (9). dl is the element
length, i.e. the distance between two vortices.

∆Pi = ρf .
Γi
dl
.
(

U∞ + Uw
i − Ẋ

c

i

)
.ni +

i∑
j=1

ρf .Γ̇j (8)

Fi = ∆Pi.ni.dl (9)

Mechanical power transmitted from the flow to the
membrane is then the product of hydrodynamic forces
and the structure’s speed (Eq. (10)).

P =

N∑
i

Fi.Ẋi (10)

B. Co-rotational finite elements method
The structure model aims to describe the motion

of the membrane under external dynamic loadings.
The structure’s displacement, velocity and acceleration
generate stiffness, damping and inertial forces. The
general form of the system’s dynamic equation is Eq.
(11), with [M] the mass matrix, [C] the damping matrix,
[K] the stiffness matrix and Fext the exterior forces
vector. These matrices are built from the discretization
of the dynamic problem by finite elements.

Fext = [M]Ẍ + [C]Ẋ + [K]X (11)

As noticed during previous experiments [1], the
membrane undergoes small deformations and large
displacements, which generate non-linear behaviours.
This explains the use of the co-rotational finite el-
ements method for the computation of the stiffness
matrix. This formulation uses a fixed frame for the

INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 3, NO. 3, NOVEMBER 2020 120 

  



TRASCH et al.: NUMERICAL MODELLING OF AN UNDULATING MEMBRANE TIDAL ENERGY CONVERTER

rigid body motion and expresses local deformations
in a co-rotational frame attached to the element [4].
The membrane’s thickness being small compared to its
length, the Euler-Bernouilli beam hypothesis can be ap-
plied: the beam’s cross-section is considered to remain
normal to the element neutral axis after deformation
[10].

The structure is divided into N parts. In its initial
configuration, the beam element is defined by its nodes
coordinates (x1, y1) and (x2, y2) in the global frame.
There is 6 degrees of freedom by elements, namely two
translations u and v and a rotation θ for each node. The
global displacement vector X is defined by Eq. (12) for
an element:

X = [u1 v1 θ1 u2 v2 θ2]T (12)

The element is then defined in a new co-rotational
local frame, with 3 degrees of freedom in which the
local displacement vector is expressed by Eq. (13).

X = [ū θ̄1 θ̄2]T (13)

Fig. 3 illustrates the parameters describing the el-
ement local and global displacements. It shows the
relation between global and local variables. Vector X̄
is obtained through Eq. (14). ū = l − l0

θ̄1 = θ1 − β + β0

θ̄2 = θ2 − β + β0

(14)

Fig. 3. Initial and current configuration of a beam element.

The element initial length is l0 and the current length
in the co-rotational frame l is calculated by Eq. (15). β0

is the element initial angle and β its current angle in the
co-rotational frame (Eq. (16)). θ1 and θ2 are the nodes
global rotations, θ̄1 and θ̄2 are their counterparts in the
local frame (Eq. (17)).

l =
√

(x2 + u2 − x1 − u1)2 + (y2 + v2 − y1 − v1)2 (15)

β = arctan

(
y2 + v2 − (y1 + v1)

x2 + u2 − (x1 + u1)

)
(16)

θ̄i = arctan

(
sinβi cosβ − sinβ cosβi
cosβ cosβi + sinβ sinβi

)
(17)

The relation between the local and the global dis-
placement vectors for an element is obtained through
Eq. (18). B is the transformation matrix calculated by
Eq. (19). c and s respectively refer to cos(β) and sin(β),
δ is the differential operator.

δX̄ = BδX (18)

B =

 −c − s 0 c s 0
−s/l c/l 1 s/l − c/l 0
−s/l c/l 0 s/l − c/l 1

 (19)

The transformation matrix B also links the local
interior forces q̄ associated with local displacements X̄
and the global interior forces q associated with global
displacements X :

qi = BT q̄i (20)

The relation between local forces and local displace-
ment is obtained by Eq. (21), where N̄ is the local
normal force, M̄1 and M̄2 are the nodes local moments,
A is the area of the beam cross-section, E the Young
modulus and Iz the second moment of area.

q̄i =

 N̄
M̄1

M̄2

 =
E

l0

 A 0 0
0 4Iz 2Iz
0 2Iz 4Iz

 X̄ = C̄X̄ (21)

The stiffness matrix [K] links the global internal
forces and the global displacement vectors (Eq. (22)).
It is obtained by from Eq. (18) and the variation of Eq.
(20). Its expression is given by Eq. (23), with zT = [s −
c 0 − s c 0] and rT = [−c − s 0 c s 0].

δq = [K]δX (22)

[K] = BT C̄B +
N̄

l
zzT +

M̄1 + M̄2

l2
(rzT + zrT ) (23)

The damping matrix is estimated as being propor-
tional to the stiffness matrix (Eq. (24)). This kind of
damping is a specific application of Rayleigh damping
that is equivalent to Kelvin viscous damping model
[11].

[C] = αamo[K] (24)

The lumped mass matrix is used, it is assembled
from elementary mass matrices calculated by Eq. (25).

[Me] =
ρsA

2


l0 0 0 0 0 0
0 l0 0 0 0 0
0 0 I 0 0 0
0 0 0 l0 0 0
0 0 0 0 l0 0
0 0 0 0 0 I

 (25)
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C. Interaction process and system solver
Fluid-structure coupling is here based on a parti-

tioned approach. Fluid and structure models are solved
iteratively using the results of each other. This ap-
proach is modular, which facilitates the calculations
implementation and/or modification. However, the
codes are solved successively and not simultaneously.
This introduces an additional numerical error that can
increase during the simulation. Several strategies are
used to limit this error.

An iterative process on both models is implemented
at each time step, with the respect of a convergence
criteria (Fig. 4). This kind of coupling improves the
interaction quality and enables to converge to the same
solution as a monolithic approach [12]. It is used in
high mass ratio applications such as offshore engineer-
ing.

Fig. 4. Diagram of fluid-structure coupling algorithm with an
implicit partitioned approach

Further methods are used to ensure the convergence,
such as the added mass implementation in the struc-
ture code [13] and the Aitken adaptive relaxation [14].

The added mass is the virtual mass of fluid matching
the inertial part of the fluid forces, that is to say, the
force component proportional to the body acceleration
[15]. In the present study, the fluid density is of the
same order as the solid one. The added mass is then
important and affects significantly the structure’s be-
haviour resolution [16].

A quick method for added mass estimation of slen-
der body is used in this paper (Eq. (26)). The added
mass term is proportional to fluid density ρf and to the
element surface S to the power of 3/2. It is defined by
a coefficient kma, that only depends on the structure’s
geometry [13]. Here, kma = 0.38. The added mass term
is then added to the diagonal terms corresponding
to translations degrees of freedom in the solid mass
matrix.

Ma = kmaρfS
3/2 (26)

The system equations is then a second order dif-
ferential equation. The selected method of numerical

integration is the average acceleration method (Eq. (27)
& (28)). It is widely used in structure dynamics because
it is implicit and unconditionally stable [17].

Ẋ t+∆t = Ẋ t +
∆t

2

[
Ẍ t + Ẍ t+∆t

]
(27)

X t+∆t = X t + ∆tẊ t +
∆t2

4

[
Ẍ t + Ẍ t+∆t

]
(28)

The system equation can then be written as Eq. (29),
where [A] = [M] + ∆t

8 [C] + ∆t2

4 [K] is the system state
matrix and R = Fext − Finertiel − Famort − Fint is the
numerical residual vector.

[A]δẌ = R (29)

The state matrix is then modified in order to take
into account boundary conditions and imposed dis-
placements. In this case, pre-stress cables are modelled
as a bar element and the membrane is clamped at its
leading edge.

The solution is obtained by the Newton-Raphson al-
gorithm, by iterating on Ẍ (t+∆t) in order to minimize
the residual. The iteration starts from an estimated
solution Ẍ g(t + ∆t) = Ẍ (t). This estimation is used
to calculate the state matrix [A], the force vector F and
the residual R.

Aitken method is also used to accelerate the conver-
gence [14]. A relaxation factor hi calculated according
to Eq. (30) is multiplied to the solution increment
[A]−1R. i being here the iteration number.

hi+1 = −hiRTi−1

Ri − Ri−1

||Ri − Ri−1||2
(30)

• If the norm of the residual is inferior to the
convergence criteria ε, then the convergence is
established:

Ẍ (t+ ∆t)← Ẍ g(t+ ∆t) (31)

• Else, the solution is actualized and a new iteration
is done:

Ẍ g(t+ ∆t)← Ẍ g(t+ ∆t) + hi[A]−1R (32)

Initialization process includes a ramp on cables with-
draw length and a temporary vertical loading to ini-
tiate the structure motion. This ramp facilitates the
beginning of the modeling procedure. It is calculated
by Eq. (33) for the cables withdraw length and by Eq.
34 for the temporary vertical loading, with frampe(t <
t1) = frampe(t1) and frampe(t > t2) = frampe(t2). Here,
t1 = 0 et t2 = 2.

frampe(t ∈ [t1, t2]) =
1

2

[
sin

(
π(

t− t1
t2 − t1

)− π

2

)
+ 1

]
(33)

frampe(t ∈ [t1, t2]) =
1

2

[
sin

(
2π(

t− t1
t2 − t1

)− π

2

)
+ 1

]
(34)
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III. MEMBRANE DYNAMIC BEHAVIOR

D. Experimental set-up
The 1/20th scale prototype of an undulating mem-

brane tidal energy converter is described in [1] and
summarised here. Its results are used for comparison
with the numerical model. Geometric and dynamic
scaling have been used with respect to structural simil-
itude. The prototype is made of a polyacetal plate of
dimension: L × L × h = 0.8 × 0.8 × 0.003 m3. It is
stiffened by 6 transverse carbon/epoxy bars to ensure
a 2D motion. Upstream and downstream rigid flaps
lengthen the membrane by Lflap = 0.15L. The mem-
brane is attached by three polyacetal bars of stiffness
kfix = 6250 N/m, themselves clamped to the frame
that maintain the prototype in the middle of the 2-
meters-deep water column.

The structure is pre-stressed by compression cables
that buckle it in the axial direction (Fig. 5). Compres-
sion cables connect the downstream end to the frame.
They are shorter than the distance at rest between
the attachment points and are characterised by the
withdraw length ratio d (Eq. (35)). The cables put the
membrane in buckling before it is submitted to axial
flow.

d =
L+ Larm − Lcable

L
(35)

The prototype has been tested in the IFREMER flume
tank of Boulogne-sur-Mer [18]. Instrumentation of tank
tests is composed of a 6-components load cell attached
to the prototype’s frame and a motion tracking system
using 7 LEDs as targets that are located on the mem-
brane’s side. Sampling frequency is fs = 100 Hz and
measurement time is ∆t = 80s. A PIV wake charac-
terisation has also been carried out and presented in
[19].

Fig. 5. Picture of the 1/20th scale prototype during experiments

E. Comparison with experiments
The numerical structure considered for experimental

comparison is a pre-stressed membrane clamped at
its trailing edge. It does not account for the fixation
arms, the flaps nor the transverse bars. The following
parameters are used: L = 1 m; h = 0.003 m; ρs = 1600
kg/m3; E = 5.109 N/m2; αamo = 1.5.10−3 s; d = 0.05;
ρf = 1000 kg/m3; u∞ = 0.8 m/s; kma = 0.38; N = 50;
∆t = 0.002 s; Nω = 6000.

The membrane motion obtained with these param-
eters is plotted in Fig. 6 and 7 and compared with

experimental results. The trajectory, as well as the
amplitude and the frequency, are really close to those
observed during experiments. Indeed, the simulation
gives an undulation amplitude of a = 0.38L and a
frequency of f = 0.25u∞/L. The differences with the
experimental model are respectively +4.2 % and -4.3 %.
The shift in the membrane average vertical position is
due to the absence of gravity in the numerical model.

Fig. 6. Numerical and experimental results comparison of the
membrane position superimposed every 50th period.

Fig. 7. Numerical and experimental results comparison of the time
evolution of trailing edge vertical position.

The evolution of lift and drag forces is represented
in Fig. 8 and 9. The numerical model manages to
reproduce the hydrodynamic forces on the membrane.
However, there is a high variability of numerical re-
sults, with what looks like a parasite signal on a
frequency at about ≈ 3 Hz and amplitude ≈ 100 N.

This problem could be due to the mass and damp-
ing matrices that are oversimplified. Indeed, Rayleigh
damping is supposed to be a linear combination of
stiffness and mass matrices (see, for example [20]). The
linear coefficients of this combination are calculated
from the damping of two deformation modes. It is
then possible to specify one damping rate for the first
unstable mode and another for the highest mode acting
in the calculus.

Furthermore, the added mass matrix is here con-
sidered to be a diagonal matrix where the terms
corresponding to rotational degrees of freedom are
cancelled. This formulation is certainly too simplistic
and should be improved (see for example [13]). The
value of the added mass coefficient kma could also be
adjusted to reflect more closely the inertial component
of fluid forces. If it is increased, it will limit velocity
variations at high frequency and consequently restrict
the hydrodynamic forces variations visible in Fig. 8.
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Fig. 8. Numerical and experimental results comparison of the time
evolution of lift forces.

Fig. 9. Numerical and experimental results comparison of the time
evolution of drag forces.

F. Wake results
Axial and vertical speeds are presented in Fig. 10 for

six instants of the undulation cycle from top to bottom.
The membrane is plotted as a white line. Areas of
acceleration on the concave sides of the membrane and
deceleration on the convex sides are visible in the axial
speed map, on the left of Fig 10. These areas alternate
and propagate along the membrane with variable size
according to the membrane motion. As observable on
the right part of the figure, the vertical motion of the
membrane produces areas of vertical flow speed of
the same direction. These areas also propagate in the
current direction.

Fig. 11 presents the flow field at a given position
of the membrane. On this picture the deceleration and
acceleration areas are clearly visible. We can also see
how the vertical speed is impacted by the motion of
the membrane. These flow perturbations then separate
from the membrane at its trailing edge and shape the
wake structure as they move downstream.

The evolution of the circulation emitted in the wake
is presented in Fig. 12. As expected, emitted circulation
oscillates around zero, it is positive during one half
of the undulation cycle and negative during the other
half, which explains the coiling motion of the particles
in the wake and the composition of the wake maps
(Fig. 13 and 14). Here also, there is a high variability
of the signal. This error can affect the displacement
of wake vortices and induce an error in the following
wake maps. Therefore, the following results must be
considered with care until this variability problem is
solved

Fig. 10. Horizontal and vertical flow speed around the membrane
at instants every 6th of an undulation cycle.

Fig. 11. Instantaneous flow field around the membrane at t*=20.
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Fig. 12. Circulation emitted in the wake at each time step.

Wake vortices positions are plotted as blue dots in
Fig. 13 on a instantaneous map of the flow speed mag-
nitude. The motion of these vorticity particles accord-
ing to computed local flow speed enables the model
to calculate the wake flow field more precisely and
especially its vertical expansion. The wake presents a
ribbon of flow perturbations with a sinusoı̈dal shape. It
is composed of an alternation of faster and slower flow
speed areas. Point-vortices positions in the wake also
show an alternation of positive and negative vertical
speed areas. These areas are generated by the vertical
motion of the membrane and correspond to half a cycle
each. Indeed, undulation period being T = 4 s and flow
speed U∞ = 0.8 m/s, each area is about 1.6 m long,
that is ≈ TU∞/2.

Fig. 13. Instantaneous flow velocity magnitude in the wake.

Mean horizontal flow speed map is presented in
Fig 14. It shows that the vertical expansion of the
wake seems to have a parabolic shape according to
the horizontal position. There is an acceleration of the
flow around y = 0 and on the top and the bottom of the
wake. Between these areas, the flow is decelerated. This
is consistent with the experimental results presented in
[19] for a similar, but different configuration.

These results are satisfying but there are still some
differences with experimental results. This can be due
to the absence of flaps and fixation bars in the nu-
merical model. Diffusion and dissipation of the wake
particles vorticity could also improve the results. The
use of more elaborated damping and added mass
matrix should correct the circulation of wake particles,
hence their displacement.

Fig. 14. Mean axial velocity in the wake.

IV. CONCLUSION AND PERSPECTIVES

The 2D fluid-structure interaction numerical model
presented in this paper is based on an implicit par-
titioned coupling between an unsteady point-vortex
method and a co-rotational finite element formulation.
Its results are close to the experimental model’s ones
for an undulating membrane tidal energy converter
without power take off. The high quality of the results
despite various hypotheses enables to validate the
numerical model for this specific application.

Furthermore, the differences are easily explainable
and will be corrected in the near future. For example,
the addition of gravity into the numerical simulations
could adjust the membrane’s trajectory mean vertical
position. The use of more elaborate damping and
added mass matrix should also improve the results’
quality. A numerical model validation on several con-
figurations and a wake comparison with experimental
results are also planned.

Next step for the numerical development will be the
addition of a power take off model. Then, flaps and
fixation arms will be modelled. Different fixations for
the membrane could possibly be tested through the
addition of pivot and/or spring liaisons.

In a second phase, it will be possible to add an
upstream turbulence model [21], to add structure thick-
ness in order to test different geometries and finally
to develop a 3D model. This 3D model would enable
to study the side effects, to represent better the force
repartition and the wake and to adapt the tidal con-
verter to its environment. Once this interaction model
validated, it can be used for system optimization.
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[19] M. Träsch, A. Déporte, B. Gaurier, G. Germain, and J.-B. Drevet,
“Wake characterisation of an undulating membrane tidal energy
converter,” in Advances in Renewable Energies Offshore, G. Soares,
Ed. Taylor & Francis Group.

[20] C. Cruz and E. Miranda, “Evaluation of the rayleigh damping
model for buildings,” Engineering Structures, vol. 138, pp. 324–
336, 2017.

[21] C. Carlier, G. Pinon, B. Gaurier, G. Germain, and E. Rivoalen,
“Numerical and experimental study of elementary interactions
in marine current turbines array,” in Proceedings of the 11th
European Wave and Tidal Energy Conference.

INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 3, NO. 3, NOVEMBER 2020 126 

  


