
INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 2, NO. 1, NOVEMBER 2019 1

A Control System For a Constrained
Two-Body Wave Energy Converter

Shangyan Zou, Ossama Abdelkhalik

Abstract—Wave energy can be used to power oceano-
graphic buoys. A new switching control strategy is devel-
oped in this paper for a two-body heaving wave energy 
converter that is composed of a floating cylinder and two 
rigidly connected submerged hemispheres. This control 
strategy is designed to prevent excessive displacement of 
the floating buoy that may occur due to the actuator force. 
This control strategy switches the control between a multi-
resonant controller and a nonlinear damping controller, 
depending on the state of the system, to account for 
displacement constraints. This control strategy is developed 
using a one-degree-of-freedom dynamic model for the 
relative motion of the two bodies. Estimation of the relative 
motion, needed for feedback control, is carried out using a 
Kalman filter. Numerical simulations are conducted to select 
the proper mooring stiffness. The controller is tested with 
stochastic models of irregular waves in this paper. The 
performance of the controller with different sea states is 
discussed. Annual power production using this control 
strategy is presented based on real data in 2015 published 
by Martha’s Vineyard Coastal Observatory.

Index Terms—Wave Energy Conversion, Two-Body Heav-
ing Wave Energy Converter, Multi-Resonant Control, 
Kalman Filter, Annual Power Production

I. INTRODUCTION

Ocean waves contain abundant energy and it is
considered to be reliable and have high power density
[1]. The research on the hydrodynamics of a buoy
interacting with a fixed structure  (ex. seabed), or a
moving reference started early seventies [2]–[4]. Wave
energy converters can be categorized as: oscillating wa-
ter column [5], overtopping converters [1], and point
absorbers which are adopted in this paper.

Research on two-body systems (a buoy and a moving
reference) received a great deal of interest over the past
decades. Multiple designs of the two-body systems are
available such as systems consisting of two concentric
cylinders in which the outer cylinder is a hollow-
shape [6], [7], and systems consisting of a float and a
submerged buoy [8]. Since the shape of the submerged
body has a significant impact on the performance of
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the two body system [9], [10]. The shape of the pro-
posed two body system in this paper is also carefully
designed (shown in Fig. 1) which has demonstrated
superiority on the relative radiation damping [11]. Fur-
ther, though mooring system significantly impacts the
power extraction of the two-body system [12] and the
mooring force could be highly nonlinear for complex
mooring system. The design of the mooring system
is out of the scope of this paper, a simple catenary
mooring which is represented as a linear spring [13]
is adopted.

To optimize the performance of a two-body system, a
proper control strategy is required. Although damping
control provided a noticeable improvement on the en-
ergy harvesting of a two-body system [14] compared to
single wave energy converter, the control is not capable
to adjust the phase of system which loses optimality.
The optimal Proportional-Derivative (PD) control of a
two-body system can be designed by applying the Pon-
tryagin Maximum Principle as proposed in reference
[15]. Though optimal PD control introduces a signifi-
cant improvement on energy conversion compared to
single body system [16], the physical constraints are
difficult to be implemented in the control design. In
that context, the Pseudo-Spectrum control [17] and the
Model Predictive control [18] developed for two-body
systems handle the constraints without losing optimal-
ity. Reference [19] adopts the Model Predictive Control,
and applies a one-body equivalent modelling approach
that converts the two-degree-of-freedom model to a
one-degree-of-freedom model.

The proposed control in this paper is the multi-
resonant control [20] which is a time domain imple-
mentation of the complex conjugate control and is
designed using the one-degree-of-freedom equivalent
model. Regarding the physical constraints on the sys-
tem, the control switches between the multi-resonant
control and a nonlinear damping control [21]. The
Kalman Filter is implemented to estimate the system
response needed for control. Finally, to further validate
the performance of the control in a constantly-changing
wave climate, a full year power extraction is predicted.
The proposed design is expected to supply the power
need of the oceanographic application. The paper is
organized as the followings: Section II introduces the
dynamic model of the two-body heaving system. The
control algorithm is presented in Section III, and the
estimator is developed in Section IV. The simulation
results are shown in Section V and further discussed in
Section VI. Finally, the conclusion is drawn in Section
VII.
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Fig. 1: The geometry of the two-body system.

II. THE DYNAMIC MODEL

The geometry of the two-body system adopted in
this paper is shown in Fig. 1; it consists of a float
(cylinder) and two hemispheres (submerged). The PTO
is assumed installed between the two bodies, and
the mooring system is connected to the lower mass.
The first mass moves in vertical direction against the
second mass which is moored to the seabed. The
energy associated with the relative motion will be
converted to electricity by applying hydraulic Power
take-off (PTO) system. The PTO system is also assumed
to be capable to supply the required reactive power.
The model of the PTO system is not addressed in
this paper. The application of the hydraulic system
is inspired by [22], [23] which demonstrate a good
energy conversion performance when it is applied to
single point absorber. Motivated by the advantages of
hydraulic system including its robustness, capacity for
energy storage and speed control, the hydraulic PTO
is also widely applied in two body systems [24]–[26].
In which, reference [25] presents the detailed modelling
of hydraulic PTO which shows its superiority in power
smoothing.

The center of gravity of the floating body is at z = 0m
which is 1m away from the bottom of the cylinder.
The position z is measured from the mean water level
(MWL). The center of gravity of the submerged body
is at z = −4.55m. The dimensions of the device are
summarized in Fig. 1 and the other information of the
device are summarized in Table. I. In the table, z1,max
and zrel,max denote the limitations for the motion of
the first mass and the relative motion respectively.
umax,l and umax,h denote the low and high control limit

TABLE I: The data applied in the simulation of the
proposed device.

Symbol Value Unit

Device Properties
m11 4.637× 103 kg
m22 7.4192× 103 kg
Physical Limitations
z1,max 1 m
zrel,max 2 m
PTO Limitations
umax,l 7000 N
umax,h 5× 105 N
Mooring Stiffness
Km 3.63× 106 N/m

subject to different wave conditions. Km denotes the
mooring stiffness and the value is applied in predicting
annual power production.

Each of z1 and z2 is defined with respect to its
original center of gravity. The equations of motion of
the two-body system can be expressed as:

(m11 +m∞,11)z̈1 +m∞,12z̈2 +Bv1ż1 + hr,11 ∗ ż1+
hr,12 ∗ ż2 +K1z1 = fe1 + u

(m22 +m∞,22)z̈2 +m∞,21z̈1 +Bv2ż2 + hr,21 ∗ ż1+
hr,22 ∗ ż2 +Kmz2 = fe2 − u (1)

where m11 and m22 are the rigid body masses of the
two bodies. It is noted that in the current design the
gravity of the second mass is balanced by the buoyancy
force, thus the restoring force of the second mass
in the dynamics is provided by the mooring system.
The m∞,ij is the added mass of ith body due to the
jth mode, and hr,ij is the radiation impulse response
function. They can be obtained from the commercial
Boundary Element Software WAMIT [27]. The operator
∗ denotes the convolutional integral:

hr ∗ ż =
∫ t

0

hr(t− τ)ż(τ)δτ (2)

The radiation damping coupling (~frad,d) between the
two bodies can be extracted from Eq. (1) as:

~frad,d =

[
hr,11 hr,12
hr,21 hr,22

]
∗
[
ż1
ż2

]
(3)

which can be approximated by a state space model
[28] as:

~̇xr = Ar~xr +Br

[
ż1
ż2

]
~frad,d = Cr~xr (4)

where ~xr represents the radiation states, and Ar, Br
and Cr can be identified from the radiation impulse
response function. Further, The viscous damping coef-
ficients of the two bodies are Bv1 and Bv2 respectively
in Eq. (1). The K1 is the hydro-static coefficient of the
floating mass, and Km is the mooring stiffness of the
submerged mass. Additionally, the excitation forces of
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the two bodies are fe1 and fe2 respectively which can 
be computed as:

fe1(t) =

Nw∑
n=1

<(f̃e1(ωn)η(ωn)ei(−ωnt+φn))

fe2(t) =

Nw∑
n=1

<(f̃e2(ωn)η(ωn)ei(−ωnt+φn)) (5)

where f̃e1(ωn) and f̃e2(ωn) are the frequency depen-
dent force coefficients which can also be obtained from
WAMIT. The η(ωn) is the frequency dependent wave
elevation. φn is random phase shift and Nw is the
number of frequencies of the excitation forces.

Let us define a state vector as ~x =
[x1, x2, x3, x4, ~xr]

T , where x1 and x2 are the
displacements of the two bodies, x3 and x4 are
the velocities of the two bodies. The equations of
motion of the two-body system can then be written in
a state space format as:

~̇x = A~x+B~fe +B~u (6)

where:

A =


[
0 0
0 0

] [
1 0
0 1

] [
~0
~0

]
−M−1K −M−1Bv −M−1Cr[
~0 ~0

]
Br Ar



B =


0 0
0 0
1 0
0 1
~0 ~0

 (7)

In addition, ~fe = [fe1, fe2]
T , ~u = [u, −u]T , and:

M =

[
m11 +m∞,11 m∞,12

m∞,21 m22 +m∞,22

]
(8)

K =

[
K1 0
0 Km

]
(9)

Bv =

[
Bv1 0
0 Bv2

]
(10)

III. THE CONTROL ALGORITHM

A. The multi-resonant control

In this section, the multi-resonant control is derived
for the two-body system by applying the one-body
equivalent approach. Instead of deriving the control
based on 2-degree-of-freedom equation of motion, the
control can be derived based on the model that is
expressed in terms of the relative motion. The optimal
impedance of the control can be identified based on
the equivalent intrinsic impedance. It is noted that, the
one body equivalent approach can be applied in the
proposed system since physically only one actuator is
implemented between two bodies. The details of the
derivation of one body equivalent approach can be

found in [19]. First, we need to consider the frequency
domain expression of Eq. (1) as:

(m1 +ma,11)(−iω)X3 + (R11 +Bv1)X3+

K1

−iω
X3 + (R12 − iωma,12)X4 = Fe1 + U

(m2 +ma,22)(−iω)X4 + (R22 +Bv2)X4+

Km

−iω
X4 + (R21 − iωma,21)X3 = Fe2 − U

(11)

where ma,ij and Rij are the frequency dependent
added mass and radiation damping respectively. X3

and X4 are the velocities of two bodies in frequency
domain. Fe1, Fe2 and U are the excitation forces and
control expressed in frequency domain. It is noted that
R12 = R21 and ma,12 = ma,21 [19]. Let us denote:

Z12 = R12 − iωma,12

Z21 = R21 − iωma,21 (12)

We have Z12 = Z21. For the convenience of mathe-
matical derivation, the Z21 in the equations will later
be replaced by Z12. We can also define:

Z1 = (m1 +ma,11)(−iω) +
K1

−iω
+R11 +Bv1 (13)

Z2 = (m2 +ma,22)(−iω) +
Km

−iω
+R22 +Bv2 (14)

The form of the multi-resonant control of a mono-
tonic wave is:

u = −Kp(x1 − x2)−Kd(x3 − x4) (15)

where Kp and Kd are the proportional and derivative
feedback gains respectively. This equation can also be
expressed in frequency domain as:

U = −( Kp

−iω
+Kd)(X3 −X4) (16)

Hence, the impedance of the controller is Zc =
iKp

ω +
Kd. Eq. (11) now can be expressed in a more condense
format as:

Z1X3 + Z12X4 = Fe1 − Zc(X3 −X4)

Z12X3 + Z2X4 = Fe2 + Zc(X3 −X4) (17)

It can be further written in a matrix format as:[
Z1 + Zc Z12 − Zc
Z12 − Zc Z2 + Zc

] [
X3

X4

]
=

[
Fe1
Fe2

]
(18)

The velocities can be solved as:[
X3

X4

]
=

1

D

[
Z2 + Zc −Z12 + Zc
−Z12 + Zc Z1 + Zc

] [
Fe1
Fe2

]
(19)

where:

D = (Z1 + Zc)(Z2 + Zc)− (Z12 − Zc)2

= Z1Z2 − Z2
12 + (Z1 + Z2 + 2Z12)Zc (20)

As a result, the relative motion can be obtained:

Xrel = X3 −X4

=
1

D
((Z2 + Zc)Fe1 − (Z1 + Zc)Fe2+

(Zc − Z12)(Fe2 − Fe1))

=
1

D
((Z2 + Z12)Fe1 − (Z1 + Z12)Fe2) (21)
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If we denote Z0 = Z1 + Z2 + 2Z12, we will have:

D = Z1Z2 − Z2
12 + Z0Zc (22)

The equivalent excitation force can be modelled as
[19]:

Feq =
(Z2 + Z12)Fe1 − (Z1 + Z12)Fe2

Z0
(23)

Substitute Eq. (22) and (23) into Eq. (21) we get:

Xrel =
FeqZ0

Z1Z2 − Z2
12 + Z0Zc

=
Feq

Z1Z2−Z2
12

Z0
+ Zc

(24)

If we define the equivalent intrinsic impedance Zi,eq
as:

Zi,eq =
Z1Z2 − Z2

12

Z0
(25)

Then Eq. (24) becomes:

Xrel =
Feq

Zi,eq + Zc
(26)

The 2-degree-of-freedom equation of motion finally
is transformed to a single degree of freedom equation
based on relative motion. The optimal impedance of
the controller should be designed to be the complex
conjugate of the equivalent intrinsic impedance [18],
[19], [29]:

Zc = Z∗i,eq (27)

Since Zi,eq = <(Zi,eq) + i=(Zi,eq), We have:

Zc = Z∗i,eq = <(Zi,eq)− i=(Zi,eq) (28)

The PD feedback gain can be computed as:

Kp = −=(Zi,eq)ω (29)
Kd = <(Zi,eq) (30)

The derivation of optimal feedback gains Kp and Kd

with a monotonic wave is extendable to the irregular
wave condition. The multi-resonant control under the
irregular wave condition takes the form of:

u =
N∑
n=1

un

=
N∑
n=1

−Kp,n(x1,n − x2,n)−Kd,n(x3,n − x4,n) (31)

where the nth component of the displacements, x1,n
and x2,n, response to the dynamics of the nth system:[
ẍ1,n
ẍ2,n

]
=M−1a (~Fe+~u−(Bv+R)

[
x3,n
x4,n

]
−K

[
x1,n
x2,n

]
) (32)

where

Ma =

[
m11 +ma,11 ma,12

ma,21 m22 +ma,22

]
(33)

R =

[
R11 R12

R21 R22

]
(34)

In Eq. (31), the x3,n and x4,n are the nth components
of velocities of the two bodies. So the nth PD control

gains can be computed from the equivalent intrinsic
impedance of the nth system as:

Kp,n = −=(Zi,eq,n)ωn (35)
Kd,n = <(Zi,eq,n) (36)

The number of feedback components of the multi-
resonance control (N ) is a design variable.

B. The switching control

To account for the physical limitations on the two-
body system, a switching control strategy is proposed.
The control will switch between two control laws
where one is the multi-resonant control and the other
one is the nonlinear damping control. A switching cri-
teria xsc is defined based on the relative displacement
of the two bodies. The algorithm of this control law is
summarized below:

if ‖xrel‖ < xsc then
if ‖uopt‖ < γ then
uopt =

∑N
n=1−Kp,n(x1,n − x2,n) − Kd,n(x3,n −

x4,n)
else
uopt = sign(uopt)γ

end if
else

if ‖uopt‖ < γ then
uopt = −α(c0 + c1‖xrel‖ + c2‖xrel‖2 +
c3‖xrel‖3)ẋrel

else
uopt = sign(uopt)γ

end if
end if

where xrel = x1 − x2 is the relative displacement, γ
is the limitation of the control force. The parameters
α, c0, c1, c2 and c3 are the nonlinear damping control
coefficient. The nonlinear damping control requires
the information of the relative motion, therefore the
measurements of relative motion will be fed into the
control.

IV. THE ESTIMATOR

Since the multi-resonance control requires the infor-
mation of the nth components of the system responses,
the Kalman Filter is implemented for estimating system
response components. The displacements of the two
bodies can be approximated as:

x1 =
N∑
n=1

x1,n ≈
N∑
n=1

a1,n cos(ω0,nt) + b1,n sin(ω0,nt)

x2 =

N∑
n=1

x2,n ≈
N∑
n=1

a2,n cos(ω0,nt) + b2,n sin(ω0,nt)

(37)

where ω0,n is the nth component of the vector ~ω0

which has the components evenly distributed in a
certain range. The a1,n, b1,n, a2,n and b2,n are the nth

components of the vectors ~a1, ~b1, ~a2 and ~b2 which are
the coefficients of the Fourier terms. Let the estimated
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states ~̂X = [~̂a1,~̂b1, ~̂a2,~̂b2]
T , the dynamics of the Kalman

Filter is:

˙̂
~X = ~0 (38)

Ṗ = GQGT (39)

where P is the error covariance matrix, G is the weight
of the process noise, Q is the process noise covariance
matrix. The measurement model of the Kalman Filter
can be constructed as:

~̃yk =

[
z̃1
z̃2

]
= Hk

~̂Xk + ~v(t) (40)

where ~v(t) is the measurement noise vector and:

Hk =

[
cos(~ω0t) sin(~ω0t) ~0 ~0

~0 ~0 cos(~ω0t) sin(~ω0t)

]
(41)

To update the estimation at each stage we collect the
measurements, the Kalman Gain needs to be computed
as:

Kk = P−k H
T
k [HkP

−
k H

T
k +Rk]

−1 (42)

where Rk is the measurement noise covariance matrix
at kth stage. Finally, the process of the continuous-
discrete Kalman Filter is summarized below:
(1). Propagate Eq. (38) and (39) to next stage k, to obtain
~̂X−k and P−k .
(2). Compute the Kalman Gain using Eq. (42).
(3). Update the state estimation ~̂X−k and error covari-
ance matrix P−k using equations below:

~̂X+
k = ~̂X−k +Kk[~̃yk −Hk

~̂X−k ]

P+
k = [I −KkHk]P

−
k (43)

(4). Obtain the updated state estimation and error
covariance matrix: ~̂X+

k and P+
k .

(5). Repeat step (1).

The initial guess of state estimation ~̂X0 and error
covariance matrix P0 is required to start the Kalman
Filter. In this paper, the Kalman Filter is initialized with
the available hydrodynamic coefficients as:

~̂X0 = [~̂a1,0, ~̂b1,0, ~̂a2,0, ~̂b2,0]
T (44)

P0 = 5
~̂X0

2

~̂XT
0

2
(45)

where the nth component of ~̂X0 is computed as:

â1,n,0 = <(Zn(1))
b̂1,n,0 = =(Zn(1))
â2,n,0 = <(Zn(2))
b̂2,n,0 = =(Zn(2)) (46)

and:

Vn =

[
Z1,n + Zc,n Z12,n − Zc,n
Z21,n − Zc,n Z2,n + Zc,n

]−1 [
Fe1(ωn)

ηmax

N
Fe2(ωn)

ηmax

N

]
Zn =

Vn
−iωn

(47)

Fig. 2: The power extraction and the relative motion with
different mooring stiffness K.

V. SIMULATION RESULTS

The simulation results are presented in this section.
In the simulated system, the mass of the floating body
in Fig. 1 is 4.637×103kg and the mass of the submerged
body is 7.4192 × 103kg. All the numerical results are
simulated in Matlab®.

A. The Multi-Resonant control with different mooring stiff-
ness

In this paper, a simple catenary mooring is adopted
[13] which is represented as a spring (Kmz2). It is
critical to have a proper design of the mooring stiffness
Km. As a result, the energy production of the two-
body system by applying multi-resonant control with
different mooring stiffness is examined first. These
mooring stiffness are: [10, 1000, 1 × 104, 3 × 104, 5 ×
104, 6× 105, 3.63× 106]N/m. The wave applied in the
simulations has a Bretchneider wave spectrum with
a significant height (Hs) of 0.3m and a peak period
(Tp) of 9s. A relative small wave condition is applied
since the multi-resonant control does not consider the
physical constraints. Moreover, the maximum control
effort is 7000N which is affordable by a hydraulic PTO
unit. Fig. 2 shows the power extraction and maximum
relative motion versus different mooring stiffness. As
indicated in the figure, the power extraction of the
two-body system is stable around 150W when the
mooring stiffness is greater than 3 × 104N/m. How-
ever, the maximum relative motion shows a decreasing
trend when the mooring stiffness is increasing from
3×104N/m to 3.63×106N/m. Further, Fig. 3 shows the
power extracted from the two-body heaving systems
by applying one body equivalent approach and two-
body approach. Clearly, by applying the one body
equivalent approach, the energy production is not only
higher, but also more stable when the mooring stiffness
is greater than 3× 104N/m.

B. The performance of the Multi-Resonant Control
In this section, the details of the performance of the

multi-resonant control are presented. The wave applied
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Fig. 3: The comparison between the power extracted by
applying the one body approach and two body approach

with different mooring stiffness K.

in the simulation has a Bretchneider wave spectrum
with a significant height of 0.3m and a peak period of
9s. Based on the discussion in last section, the mooring
stiffness is selected as 5 × 104N/m since the energy
production is the maximum under this mooring stiff-
ness. Additionally, by selecting this mooring stiffness,
the expenditures on the mooring system can be signif-
icantly saved compared to choosing a very high moor-
ing stiffness. Furthermore, the multi-resonant control
contains 4 PD feedback controls in response to the
frequencies ~ω = [0.005, 0.465, 0.925, 1.385]rad.s−1 and
its limitation is 7000N. The limitations of the absolute
motion of the first mass is 1m and of the relative
motion ‖x1 − x2‖ is 2m to prevent collision between
two bodies. The power production profiles of the two
bodies are shown in Fig. 4, and the total average
power of the two bodies is 149.92W. As shown in
the figure, significant reactive power is required since
the multi-resonant control focuses on optimizing the
energy production. Fig. 5 shows the energy extraction
of the two bodies. As indicated in the figure, the energy
harvested by the first body is 1.173 × 105J and by the
second body is 2.707 × 104J. Moreover, the displace-
ment of the two bodies are presented in Fig. 6 and
Fig. 7 respectively. The estimations of the displacement
show a good agreement with the true signals and the
maximum absolute motions of the two bodies are both
smaller than 0.5m. The relative motion between two
bodies is shown in Fig. 8, and its maximum magnitude
is around 0.85m. Fig. 9 shows the motion of the two
bodies measured from the mean water level to the
center of gravity of the two bodies.

C. The performance of the switching control

Though the multi-resonant control shows promising
performance on controlling the two-body system, the
physical limitations are not considered in the control.
The wave applied in the simulation shown in last
section is small which naturally guarantees the motions
of the two bodies are within feasible range. However,
most of the ocean wave conditions are stronger and

Fig. 4: The power extracted from the first and the second
mass with control limitation 7000N and mooring stiffness

5× 104N/m.

Fig. 5: The energy extracted from the first and the second
mass with control limitation 7000N and mooring stiffness

5× 104N/m.

Fig. 6: The estimation of the displacement (z1) of the first
mass.

contain more energy. Therefore, a switching control is
proposed and numerically examined in this section.
The mooring stiffness is selected to be 3.63 × 106N/m
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Fig. 7: The estimation of the displacement (z2) of the second
mass.

Fig. 8: The estimation of the relative displacement (z1 − z2).

Fig. 9: The displacement of the first and the second mass
measured from the mean water level to the center of

gravity of the two bodies.

to keep the two-body system survival in extreme
wave conditions. The sea states applied in the sim-
ulations are extracted from the one-year observation
data which is recorded by Marthas Vineyard Coastal
Observatory (MVCO) (http://www.whoi.edu/mvco)

Fig. 10: The power extracted by applying switching control
with control limitation 5× 105N under the wave condition

Hs = 3.8m and Tp = 16s.

[30]. Since most of the ocean wave fields are dominated
by swell waves [31], the waves generated by the wind
will not be included in the simulations. The significant
wave heights of the sea conditions vary from 0.1m to
3.8m and the peak periods vary from 7s to 16s. For
even larger waves in more energetic sites, the proposed
design is expected to be more dominated by nonlinear
damping control and the system is expected to operate
in survival mode under extreme waves. The numerical
simulation is first conducted on validating the perfor-
mance of the switching control under an extreme wave
condition in the current site (Hs = 3.8m and Tp = 7s).
As shown in Fig. 11, the absolute motion of the first
mass (profile in blue) is beyond the limitation when
the maximum control effort is only 7000N. Accordingly,
more control effort is required to constrain the motion
of the system. As presented in the same figure, the
absolute displacement of the first body (profile in red)
is within the feasible range when the maximum control
effort is 5×105N. It is noted that the switching criteria
is xsc = 0.1m when higher control limitation is applied,
compared to xsc = 0m when lower control limitation is
applied. This indicates, although, the nonlinear damp-
ing control is dominant to keep the system survive
from extreme wave conditions, there is room for multi-
resonant control when more control effort is allowed.

The performance of the switching control in terms of
energy extraction under a variety of wave conditions
is shown in Fig. 12 and 13 respectively. In which,
the control limitations are assumed to be 7000N and
5×105N respectively since the wave conditions applied
in Fig. 13 are stronger than the waves in Fig. 12. The
power extraction during the extreme wave condition
(Hs = 3.8m and Tp = 16s) is presented in Fig. 10. From
the figure, we can tell the reactive power is mitigated
when the nonlinear damping control is applied to
constrain the motion (compare to Fig. 4). In addition,
the maximum power extracted from strong waves with
high control limitation is 1.2 × 104W compared to
2000W extracted from small waves with low control
limitation. Further, these two figures show a simi-
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Fig. 11: The displacement of the first mass with a low
control limitation and a high control limitation.

Fig. 12: The power extraction of different waves with a low
control limitation.

lar trend for the energy production versus significant
height and peak period. Approximately, by apply-
ing switching control, more energy can be harvested
from the wave that has higher significant height and
lower peak period. The highlighted region in Fig. 12
represents a small violation of the motion constraint
(≤ ±0.2m) due to limited control effort. However, the
data will still be kept for the convenience of predicting
annual power production later.

The Capture Width Ratio (CWR) [32] of the proposed
control are presented in Fig. 14 and Fig. 15. As shown
in the figures the maximum CWR is around 0.4 when
the wave condition is around Hs = 1.7m and Tp = 7s.
The CWR decreases under large waves when the wave
becomes more energetic since the nonlinear damping
control will be more dominant to constrain the motion
of the device. The CWR also decreases under small
waves (Hs < 0.5m) when the wave contains less en-
ergy, since the multi-resonant control is more dominant
which focuses on maximizing the energy production.

VI. DISCUSSION

The proposed multi-resonant control by applying the
one body equivalent approach can produce consider-

Fig. 13: The power extraction of different waves with a high
control limitation.

Fig. 14: The CWR of the proposed control with a low
control limitation.

Fig. 15: The CWR of the proposed control with a high
control limitation.

able energy with a proper selection of the mooring
stiffness. To consider the physical limitations, this con-
trol is further improved by applying the switching
control strategy. By applying this strategy, the two-
body system is able to survive under extreme wave
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Fig. 16: The fitted power extraction of different waves with
a low control limitation.

Fig. 17: The fitted power extraction of different waves with
a high control limitation.

conditions. Although, the superiority of the proposed
control is numerically demonstrated in previous case
studies, we would like to further validate the per-
formance of the switching control by predicting the
annual power production of the two-body system. The
dynamics that describe the interaction between the
two-body system and the wave is linear which is not
accurate when two-body system is under strong waves.
However, this paper focuses on introducing the control,
and the investigation of different dynamics for the
two-body system under different wave conditions is
beyond the scope of this paper. Therefore, for the sake
of presenting the control performance, the linear model
is applied for all the wave conditions.

To predict the energy harvesting over a year and
save the computational cost, the energy extractions
under different wave conditions are approximated by
a function f :

P ≈ f(Hs, Tp) (48)

The fitted power production surfaces are shown in
Fig. 16 and 17 respectively. In which, Fig. 16 applies
low control limitation and Fig. 17 applies high control
limitation. The linear interpolation method is applied

to generate the function f . The annual power har-
vesting is then predicted by applying function f and
different wave conditions over a year. Fig. 18 shows
the annual power production of 2015, in which the red
region denotes the power produced with a high control
limitation and the green region denotes the power
produced with a low control limitation. As indicated
in the figure, the mean power production of the two-
body system is 626.8159W in 2015. Moreover, if we
assume the two-body system is under survival mode
(no power production) when the significant heights
of the waves are greater than 1.6m, the mean power
extraction is 308.9641W. This power is around 50% of
the power production when there is no survival mode
allowed, although there are only 14days in a year when
the two-body system interacts with extreme waves.

VII. CONCLUSION

This paper investigated the application of wave
power to supply the power needs of oceanographic
buoys. A multi-resonant control is designed for the
two-body system proposed in this paper by applying
the one body equivalent approach. To consider the
physical limitations, the switching control is intro-
duced. A Kalman Filter is implemented to estimate
the states at current time. The numerical simulation
results show that the energy extraction of the switching
control is considerable with proper selection of the
mooring stiffness and control limitation. Further, the
control is tested in different wave conditions. The
simulated energy productions are utilized to predict
the annual power extraction. The predicted average
power is 626.8159W which can be applied to support
the energy demand of oceanographic buoys in the
future.
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