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Predictive Modelling and Optimisation of

Power Generation for the M4 Wave Energy

Converter: A Deep Learning Approach

S. Hoekstra, D. Howe, A. Kurniawan

Abstract— This paper investigates the use of a nonlinear
autoregression neural network for wave field predictions,
and its implementation into a power-take off passive
loading control system which tunes the damping coefficient
for a wave energy converter. The wave energy converter
considered in this study is a part of a multi-institutional
demonstrator project which has seen the deployment of a
moored multimodal multibody (M4) attenuator wave
energy converter in King George Sound in Albany, Western
Australia. The device consists of a 1-2-1 float configuration
and is approximately 20 meters in length. The developed
neural network was used to predict wave elevations and
energy spectrums for 10-second and 20-second ahead of time
intervals. Findings of this study show that the neural
network was able to accurately predict up to 10 s intervals
(where RMSE = 1.32E-02), however the accuracy of
predictions fell for 20 s predictions (wWhere RMSE = 5.20E-
02). A linear numerical model of the prototype M4 device
was used to find the optimal PTO damping coefficient for
the observed wave fields at King George Sound. This
allowed for optimisation of mean absorbed power for a
generated 3-hour JONSWAP unidirectional timeseries
using variable damping coefficients. Here, the power output
was able to be increased by 106% for a significant wave
height of 0.63 m and peak period of 3 s and resulted in an
overall increase in capture width ratio across the 3-hour
wave dataset.
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I INTRODUCTION

ONCERNS regarding increasing energy demands
and environmental impact from carbon dioxide
emissions has seen an interest for the development of
sustainable energy from renewable sources. With oceans
covering 71% of the Earth’s surface, there is large potential
for wave energy to become a viable source of renewable
energy. Swells on Australia’s South-West coastline is
predominantly large from uninterrupted weather systems
migrating from the Southern Indian Ocean [1], resulting in
significant wave energy potential. Furthermore, the ocean
represents one of the world’s largest unexplored sources
of energy, with waves providing energetic features
throughout the day and night and throughout the seasons.
It is noted that waves could provide electricity up to 90%
of the time, but wind and solar power systems may only
create electricity 20-30% of the time [2]. Here, Wave Energy
Converters are being researched and developed as a
potential solution to these recent concerns. However, they
are yet to become commercialised, and mass produced.
According to their working principle, WEC’s can be
classified into three main categories: (1) oscillating-body
which utilise a float, buoy or pitching device to extract
energy from waves, (2) oscillating water column (OWC)
where wave motion causes air flow within a chamber
subsequently driving a turbine, and (3) overtopping
devices in which water overflows the device through
hydraulic turbines. Various forms of WEC’s have been
previously explored, including the King Island Project
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from Wave Swell Energy. This project saw the
deployment of the UniWave200 at Grassy, King Island,
Tasmania which successfully operated for 12 months. The
device was an oscillating water column type, spanning
22.1 m in long 13.6 m wide and 14.2 m tall, and had a
maximum output of 200 kW [3]. Although the project was
successful, the large size and small power output
highlights one of the problems which WEC’s face for
becoming production  and
commercialisation. This suggests that further research is
needed to develop smaller WEC’s units capable of
harvesting higher levels of electricity from the ocean’s
waves. For a wave energy converter, typically the major
costs are associated with foundations and moorings,
structure, and maintenance and operations. Optimising

viable for mass

the power capture allows for a lower number of required
structures to achieve the desired power output and
therefore reducing costs.

This paper sets out to investigate increasing the
generated power output from a Moored Multimodal
Multibody (M4) WEC through incorporating predictive
modelling from a neural network into a PTO passive
damping control system. Here, a nonlinear autoregressive
neural network is used to predict oncoming wave
elevation which produces an optimal rotational damping
coefficient which correlates to the specific PTO system
used within the device. The materials of this paper are set
out as follows: Section II provides insight into the M4 WEC
and applications of neural networks, Section III describes
the methodology used within this paper, Section IV
provides results and discussions.

1I. BACKGROUND INFORMATION

A. M4 wave energy converter

The M4 WEC is of the attenuator type which is a part of
a multi-institutional program funded by Blue Economy
CRC and the Western Australian Government. The project
aimed to deploy a demonstrator device in King George
Sound, Albany, Western Australia. The device is
approximately 20 m in length and consists of two framed
rigid bodies, capturing energy through the relative motion
of multiple floats in a 1-2-1 configuration, shown in Fig. 1.
A triangular formation of the first three floats makes up
the forward body where the final float is connected on the
aft body via a hinge coupled with a PTO system. The floats
are arranged in increasing diameter from forward to aft
allowing the device to naturally weathervane from a single
point mooring, aligning itself parallel to wave propagation
direction. The WEC couples heave, surge, and pitch
excitation to enhance energy capture by combining the
principles of point absorber and hinge-raft converters [4].
The M4 design investigated in this study has been formed
from previous studies which investigated design principle
[5]. Initially, three rectangular floats were arranged
longitudinally with equal distance of half a wavelength.
Optimisation of the M4 device found that reducing the

drag coefficient of the three floats by introducing a
rounded base increased the energy capture by up to 60%
[6]. Furthermore, increasing the bow to mid float spacing
to be more than the mid to stern float spacing found
improvements to the energy capture [7]. A study explored
the influence of increasing the number of floats from 3 to 8
in various configurations through a linear diffraction time-
domain model which saw significant increase in energy
capture [8]. However, considering the levelised cost of
electricity (LCOE), the 6-float 1-3-2 and the 4-float 1-2-1
configurations were found to be more beneficial. Both of
these configurations have been previously researched for
energy yield in several sites. A study conducted by [9]
compared the mean power output of a 3-float
configuration in two potential sites: Albany, Western
Australia and Orkney, United Kingdom. The power
performance of the two sites were found to be similar, but
the severity of extreme waves at Albany is considerably
less and therefore more desirable from a survivability
perspective.

Fig. 1. 3D-schematic of the 1-2-1 M4 configuration showing
increasing float diameter, excluding power take-off.

Further potential optimisation of the M4 device may
include optimisation of the PTO system. The PTO for the
M4 device includes an electrical drive train with a
permanent magnet (PM) generator which allows for
variable torque in the form of a damping coefficient in
relation to wave conditions at site [10]. Wave climate is
variable in nature, resulting in implications for WEC
energy capture and the efficiency of the device. Here, it
may be beneficial to implement a passive loading control
system which tunes the PTO damping coefficient relative
to the oncoming wave field, therefore optimising power
generation for temporal wave fluctuations. For example,
for rotational motion the passive loading control system
will provide a given counter torque for a certain angular
velocity. PTO control systems have been investigated
previously on a heaving WEC by incorporating varying
PTO damping through utilising the Sliding Discrete
Fourier transform technique to estimate local wave
frequency [11]. Here, the PTO damping was adjusted
according to the estimated frequency. Results showed
power capture increased from 1.64% to 10.38%. PTO
optimisation of the 3-float configuration M4 device was
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explored through incorporating a linear non-casusal
controller for damping pitch control [12]. The study
predicted the incoming sea state with a Kalman filter and
used this information in the non-casusal controller to
contribute to the controller’s decision making. Numerical
results showed that the power capture was dramatically
increased with this technique. Other methods for
predicting the incoming sea state used for PTO controls
include neural networks. This was explored for a point
absorber which used a multi-layer artificial neural
network to forecast short-term wave forces [13], which saw
an increased energy absorption of 60-80%.

B. Neural networks

Neural networks (NN’s) work on the basis of the human
brain where, in the simplest form, a series on nodes are
connected in three layers (see Fig. 2): an input layer
including initial data for the network, a hidden layer
where the main computational processing occurs, and an
output layer which processes results for the given input
[14]. NNs are used to provide predictions based on the
input training data sets. Various NNs have been
developed for applications ranging from classification,
speech recognition, timeseries prediction and system
control. Types of NNs include Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM)
networks, Deep Neural Network (DNN), and Recurrent
Neural Networks (RNN) [15].

Hidden layers

Input layer
l ()
\\/

Nodes

Fig. 2. Simple neural network architecture showing series of
nodes connecting the input, hidden and output layers.

NNs have previously been used in the engineering
industry to predict longitudinal-lateral dynamics of an
autonomous vehicle [16]. Additionally, a developed DNN
was used for time-varying multibody dynamic response of
a crank shaft and connecting rod [17]. In WEC
applications, the accuracy of predicting power generation
was compared through different types of NNs [18]. The
accuracy of NNs is partially dependent on network
architecture hyperparameters such as batch size, epochs,
and number of hidden layers. In the case of forecasting in
the time-domain, both computational speed and accuracy
of predictions play a critical role when forming
hyperparameters of the NN. A previous study conducted
a sensitivity analysis on the number of hidden layers with
a range of neurons in each layer using the heave motion of
a point absorber [19]. It was found that two hidden layers
produced more accurate predictions compared to a single
layer for the specified range of neurons. However, it was

found that the addition of the second hidden layer and
neurons increased the computational processing time.
Therefore, it is critical to find a balance between these
parameters utilising NN hyperparameters.

C. Problem statement

Although sufficient research has been conducted on the
M4 device and implementing PTO control systems on
other forms of WECs to optimise power capture by
forecasting the sea state, minimal research has been
conducted on combining these by using a neural network
to optimise the M4 device. Advantages of using a NN over
other methods such as Kalman filter is that NNs can be
complex with their number of layers and neurons and their
parameters are learnt, whereas Kalman filter rely on a
precise mathematical model of the system [20]. Therefore,
a NN allows the control system to be flexible and be used
in different locations on different WEC devices. The main
scope of this study is to investigate the effects of a PTO
damping control system on the M4 WEC by utilising a
nonlinear autoregressive neural network to predict the
oncoming wave elevation.

I1I. METHODOLOGY

D. Nonlinear Autoregressive Neural Networks (NARX)

Nonlinear Autoregressive (NAR) neural networks are a
subclass of RNNs which are one of the well-known
machine learning methods to model nonlinear dynamic
systems. NAR is a time delay recurrent neural network
which learns a series of patterns and nonlinear features
based on feedback connections through different layers of
the network [21]. It generally provides good multi-step
forecasting in the short term. A modification of the NAR
network is the NARX network which incorporates
exogenous timeseries into the input training data. This
exogenous timeseries is based on external data which has
an impact on what the neural network is predicting. In the
case of wave forecasting, this external data could be in the
form of wind speed and directional data, tidal data,
geographical features and historical wave data. The
inclusion of the exogenous series is expected to provide
improvements to the accuracy of predictions as these
parameters can influence the wave climate. NARX
networks are capable of making multistep ahead
predictions in the time-domain, defined by (1) [22]. This is
used for wave forecasting in this paper.

YO = FOE-DyE=2 -
ng),u(t —1),ult —2),..,u(l - nd)) )
where, f is the activation function, Y (t) is the predicted
output sequence, y(t) is the input sequence, u(t) is the
exogenous sequence and n, is the specified time delay.
A typical NARX network consists of an input layer, one
or more hidden layers and an output layer. The NARX
network architecture used in this study included an open
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Fig. 3. Nonlinear autoregressive neural network architecture used in this study showing the defining parameters

loop used for network training and a closed loop used for
predictions, as shown in Fig. 3. For the open loop, both the
input and exogenous timeseries data were used to define
initial weights and biases (input layer states). Here, no
feedback connections are used forming an ‘open loop’. The
initial weights and biases were then used in a closed loop
along with a predefined prediction timeseries to forecast
successive timesteps. In the closed loop, feedback
connections are used for dynamic output predictions
which are then postprocessed via comparison to expected
wave elevation values. The model is trained using the
Levenberg-Marquardt backpropagation training function
which updates weights and bias according to Levenberg-
Marquardt optimisation as this has previously been
defined as the fastest backpropagation algorithm [23]. In
this study, the number of input and feedback time delays,
wave sampling frequency, prediction time length and
number of epochs were used as parameters for
optimisation of the prediction performance.

E. Neural network performance evaluation

Three criteria, Mean Squared Error (MSE), Root Mean
Squared Error (RMSE) and coefficient of determination
(R?) are employed to evaluate the neural networks
prediction performance. Values of MSE and RMSE close to
zero and values of R? close to one show agreement between
the true wave elevation and the model’s predictions. These
criteria are calculated below through (2), (3) and (4).

1 .
MSE = — E =) 2
n i=1
RMSE = VMSE (3)
n X MSE
R*=1- @)

Y =)

where, n is the number of observations, y; is the
predicted values and y; is the mean of the true values.

F.  Wawve elevation data sets

Absorbed power of a WEC is related to the wave
elevation and the PTO system. Therefore, the NN predicts
wave elevation for a specified time interval from
timeseries JONSWAP data correlating to what can be seen
at King George Sound. Fig. 4(a) presents the bivariate
probability distribution of significant wave height and
mean period recorded from a Spotter wave buoy at the
target location from January 2021 to January 2022. From
this, the most predominant significant wave height of
0.625 m and mean period of 5.50 s were used to create
synthetic unidirectional 3-hour JONSWAP timeseries data
for the NN. As the target location is in shallow waters, the
peak enhancement factor of the JONSWAP spectrum was
1. Fig. 4(b) represents the generated JONSWAP spectrum
for the created wave timeseries.
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Fig. 4. (a) bivariate probability distribution of the significant
wave height and mean period at King George Sound from January
2021 to January 2022; (b) Generated JONSWAP spectral density
for a 3-hour irregular wave, gamma = 3.
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Fig. 5. (a) Data structure of NARXNET for singular 30-minute timeseries; (b) sliding window approach used for successive predictions

for full 3-hour timeseries.

G. Data pre-processing

Pre-processing the timeseries data is an essential step
when determining the inputs for the NN. It is essential to
note that during the pre-processing process, the timeseries
data is split into an initial 30-minute duration to save
computational power and training time. This series was
then further split into wave target and exogenous series,
prediction series and validation series shown in Fig. 5(a).
The data is split according to the number of time steps (N)
required to predict a specified length of time. The target
series, or training series, includes the portioned 30-minute
wave elevation data from t = time(l,..end — N). The
exogenous series uses historical wave data. In the case of
this study, the historical wave data is shifted back N time
steps. The prediction series uses the last N values from the
target series and the validation data uses the last N values
from the 30-minute series. For successive predictions, a
sliding window approach was implemented. In this case,
the target series is updated containing the forecasted
observations and shifted forward N time steps, as shown
in Window 2 of Fig. 5(b). Then the NARXNET is re-trained
with the new 30-minute timeseries, forecasting the next
series of wave elevation. This process is repeated for the
remaining 3-hour timeseries.

Fig. 6(a) shows the target series data used for open loop
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2| Target series :
£ V.2 fj—Pradiction series A
= O Validation series \
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Fig. 6. (a) 30-minute JONSWAP scaled timeseries data used for
NARXNET forecasting; (b) correlating scaled prediction series
and validation series.

training for the created wave. Additionally, it shows the

prediction series used in closed loop forecasting and the
validation series. These can be seen in further detail in Fig.
6(b).

H. Numerical model

A numerical model of the M4 device was developed by
Kurniawan et al. [24] which provides a linear, frequency-
domain model based on the generalised mode approach.
The model allows for the estimation of power, motions,
relative freeboard, among other performance parameters
to be computed. In this study, the linear power transfer
function (see Fig. 7) was used to calculate the mean
absorbed power for the wave spectrum. The 190 kNms/rad
damping coefficient is representative of the full-scale
model.

70

60 -

ISR

0 2 4 6 8 10
wave period [s]

Fig. 7. Full-scale prototype M4 linear power transfer function
with PTO damping coefficient of 190 kNms/rad.

I. Mean absorbed power and capture width ratio of WECs in
irregular waves

For irregular waves, the mean absorbed power defined
by an energy spectrum can be written as

PIRR = [7°28, (R (F)df )
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where, PLTF

is the linear power transfer function, and
S, (f) is the energy spectrum of the irregular wave.

The mean incident wave power per unit width for a
significant wave height H, in irregular waves (assuming

deep water) is written as
1
P[RR = e ngszcge (6)

where ¢, is the group velocity corresponding to the
energy period (T), cge = gT./4m in deep water. As
described in [5], T, = 0.78T,, fory = 1.0 and T, = 0.84T,, for
y = 3.3 with y being the peak enhancement factor of the
JONWAP spectrum.
The capture width ratio (CWR) indicates the power
absorption capability of any WEC and is defined as

RR
7

where W is the device width perpendicular to wave
propagation direction.

IV. RESULTS AND DISCUSSION

J.  Prediction variables study

Sensitivity analysis is critical for the development of a
neural network in determining parameters which will
provide accurate results. This was conducted to evaluate
the effects of important input variables on the accuracy of
the network predictions and the required computational
time. In this case, such parameters included the time delay,
prediction length, sample frequency, and number of
epochs.

1)  Effect of time delay and prediction length

A sensitivity study was conducted on the input and
feedback time delay to determine the ideal number of time
steps which are fed into each iteration of training for
accurate wave field predictions, whilst minimising
processing computational duration. As a forecasting
method for PTO damping control, it is critical that the
computational duration is less than the prediction time
frame. Optimising the delay requires a good balance
between computational duration and accuracy while
avoiding overfitting and underfitting the data. Large
delays result in overfit data with large computational
processing. For this sensitivity analysis, two prediction
time lengths were studied of a 10 s and 20 s duration for a
significant wave height of 0.625 m and peak period of 5.50
s.

Error metrics such as MSE, RMSE and R? were used to
test the accuracy for each time delay and prediction length.
Table I details the sensitivity analysis for a 10 s prediction
length where the error metrics correspond to the wave
elevation predictions. It can be noted that increasing the
delay increases the accuracy of predictions, as increasing
the delay increases the number of previous time-steps that
the network considers when making future predictions. A

TABLEI
NN DELAY SENSITIVITY ANALYSIS WITH A PREDICTION LENGTH OF 10 S
(N=36), Hs=0.625M AND Tr=5.55.

Delay Computational MSE RMSE R?
time [s] [%]
10 1 8.87E-03 9.41E-02 37.91
20 2 3.31E-03 5.74E-02 76.86
30 4 3.08E-03 5.55E-02 78.46
40 6 2.20E-03 4.69E-02 84.59
N+10 7 4.79E-04 2.19E-02 96.65
TABLE II

NN DELAY SENSITIVITY ANALYSIS WITH A PREDICTION LENGTH OF 20 S
(N=72),Hs=0.625M AND Tr=5.55.

Delay Computational MSE RMSE R2[%]
time [s]

30 4 1.35E-02 1.16E-01 -29.26

40 6 8.52E-03 9.23E-02 18.32

50 7 3.39E-03 5.82E-02 67.51

60 11 8.66E-03 9.31E-02 16.92

N+20 22 1.80E-03 4.25E-02 82.71

delay of the prediction time steps (N) plus 10 provided
good correlation between predictions and validation data
whilst computational duration remains less than the
prediction length. Table II details the sensitivity analysis
for a duration of 20 s. The N+20 delay depicts good
accuracy; however, the computational duration is larger
than the prediction time which introduces accumulating
lag in long term predictions. Due to this, the NN predicts
up to 10 s maximum with a delay of N+10.

2)  Effect of sampling frequency

A sensitivity analysis was performed on the sampling
frequency of the wave timeseries data to explore the effects
on accuracy and computational duration from variability
in the number of data timesteps (see Table III). The
quantity of data used in training and predictions can affect
the accuracy and training time of NNs as large data sets
require much more processing capabilities. This analysis
was conducted on the predominant 30-minute wave
timeseries with sampling frequencies ranging from 3.5 Hz
to 7.8 Hz. It can be noted that only the smallest sample
frequency required less processing time than prediction
length. Additionally, the accuracy of predictions decreases
with increased sample frequency. However, this further
increases the processing time. In this case, a sample
frequency of 3.5 Hz was used throughout the rest of this
study.

TABLE III
NN SAMPLE FREQUENCY SENSITIVITY ANALYSIS WITH Hs = 0.625 M AND
Tr=5.5S, AND PREDICTION LENGTH OF 10 S.

Sample Computational MSE RMSE R2[%]
frequency time [s]

[Hz]

3.54 7 1.93E-04 1.39E-02  98.65
4.95 13 3.53E-04 1.88E-02  90.59
6.36 25 7.11E-03 8.43E-02 54.07
7.78 49 7.64E-03 9.04E-02 4599
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3)  Effect of NN parameters

The effects of training epochs on neural network
accuracy were also analysed. Epochs is a hyperparameter
of neural networks which defines the number of times the
learning algorithm works through the training series. The
quantity of epochs used affects the accuracy and training
time, as too large of a number may increase the
computational duration with little gain in accuracy. The
epoch sensitivity analysis was conducted for number of
epochs from 25 to 100 in 25 increments. The number of
hidden neurons was constant at 5 and the generated wave
timeseries was used for each run. Table V details the
resulting error metrics for each run. As the number of
epochs increases, it can clearly be noted from Table V that

TABLE V
NN EPOCH SENSITIVITY ANALYSIS WITH Hs =0.625 M AND Tr=5.5S,
AND PREDICTION LENGTH OF 10 S.

Epochs Computational MSE RMSE R2[%]
time [s]

25 2 2.67E-03  5.16E-02 76.12

50 4 1.09E-03  4.36E-02  82.99

75 5 573E-04 2.39E-02 94.88

100 7 6.66E-04  2.58E-02 94.03

the accuracy converges at 75 whilst retaining a training
time less than the prediction length.

K. Neural network predictions

A non-linear autoregressive NN was selected for this
study because of its flexibility and capability of handling
complex timeseries data. The NARX NN allows for
quicker processing and training times compared to other
NNs such as LSTMs. Upon creation and hyperparameter
fine tuning of the NN, the wave elevation for 10 s and 20 s
intervals were predicted for the generated JONSWAP
spectrum. Although correlation of true and predicted
wave elevation is important for showing the accuracy of
the NN, the predictions of the corresponding energy
spectrum is the critical parameter for determining the
mean absorbed power when following (5). This means that
the accuracy of the energy spectrum predictions is far
more important in the application of this study. The error
metrics for both 10 s and 20 s prediction intervals are
detailed in Table IV. These were trained with a delay of
N+10 and epochs of 75 for each interval with training times
of 5 s and 16 s. When comparing the error metrics for wave
elevation predictions to energy spectrum predictions, the
neural network can predict the energy spectrum more
accurately. Although the 20 s prediction interval was
deemed unfeasible due to processing times being longer
than prediction times, the accuracy of the energy spectrum
for 20 s interval and a delay of N+10 shows promising
results for the NN being capable of predicting longer time
frames with further hyperparameter tuning. However,
careful consideration must go into ensuring the training
time is less than the prediction time. Fig. 8 analyses the
wave elevation predictions for the 10 s interval where the

TABLE IV
ERROR METRICS FOR 10 S AND 20 S PREDICTION LENGTHS FOR THE
GENERATED WAVE TIMESERIES.

Prediction = MSE RMSE R2[%]
length [s]
Time domain 10 1.75E-04 1.32E-02 98.77
analysis 20 2.71E-03 5.20E-02 74.00
Spectral domain 10 545E-08  2.34E-04 99.22
analysis 20 8.06E-07  8.98E-04 84.95
I I (a) T
0.4 [|— Training Wave -
— [~ 10s Expected Elevation
) 0.2 - 105 Predictil?le/valw i
= O b
02F ] 1
04 | \ | i | |
-15 -10 -5 0 5 10 15
Time [s]
=1 ® ‘ .
2 o Sae *
5 -
A -05E-27"" I | I I I I 7
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
True 1 [m]

Fig. 8. (a) 10 s wave elevation prediction using the first 30-minute
data set; (b) the 10 s predicted wave elevation against the true wave
elevation.
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Fig. 9. (a) corresponding energy spectrum for validation and
prediction data for 10 s interval; (b) validation energy spectrum
against true energy spectrum.

corresponding energy spectrum predictions are detailed in
Fig. 9. Additionally, the 20 s wave elevation predictions
can be found in Fig. 10 with corresponding energy
spectrums in Fig. 11.

In addition to the error metrics, the accuracy of the 10 s
predictions was evaluated through comparing the
predicted data to the true data in Fig. 8(b) and Fig. 9(b) via
providing a visual representation where the linear
regression line indicates a perfect prediction. Taking note
of Fig. 9(a), an observable deviation in the height of the
predicted energy spectrum peak shows the NN slightly
over predicts the energy spectrum. This deviation is the
resultant of the small
elevations in Fig. 8(a). Although the error metrics show the
energy spectrum has more correlation between true and
predicted values, the small deviation in peak heights can
result in approximately 30% difference in mean absorbed

inaccuracies between wave

power. Because of this, it is critical to ensure high accuracy
in energy spectrum predictions.
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Fig. 10 (a) Illustrates the predicted timeseries for 20 s. It
can be noted that after approximately 10 s, the accuracy of
wave elevation predictions decreases as shown in Fig.
10(b). Much like the 10 s prediction, the error metrics for
the energy spectrum shows more accurate predictions
compared to wave elevation as per Table IV. However,
there are big differences between energy spectrum peaks
in Fig. 11(a), which have an impact on the calculated
absorbed power.
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Fig. 10. (a) 20 s wave elevation prediction using the first 30-
minute data set; (b) the 20 s predicted wave elevation against the
true wave elevation.
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Fig. 11. (a) corresponding energy spectrum for 20 s interval; (b)
validation energy spectrum against true energy spectrum.

L. Optimised PTO damping

The PTO damping coefficient is significant to the power
absorption of WECs. The M4’s damping coefficient is
assumed to be a linear rotational damping type measured
through the correlation between PTO torque and angular
velocity. To provide insight into the dependence of
optimised damping coefficients and the maximum power
output, a comparison is made on the linear power transfer
function for three damping coefficients (see Fig. 12).
Referring to (5), a relationship can be formed between the
optimal damping coefficient and the peak wave period of
the energy spectrum. Although increasing the damping
coefficient reduces the height of the peak frequency, it
increases the bandwidth of all other peaks. This can be
ideal for peak wave periods outside of the 3.5 s -5 s range
increasing the mean absorbed power. The optimal
damping coefficient which provides the maximum power
was calculated for the wave field at King George Sound, as
seen in Fig. 13. Here, a peak period range between 3.5 s and
5 s requires the smallest damping coefficient from falling

within the bandwidth of the maximum peak of the transfer
function. Anything which lies outside of this range
gradually increases either side. This optimal damping
coefficient is calculated solely on the maximum absorbed
power and does not consider the limitations of real-time
passive loading control which requires power from the
device. Upon prediction of the wave elevation through the
NARXNET, these optimised damping values were used
along with their corresponding transfer function to
calculate the mean absorbed power for the prediction time
length.

M. Optimised mean absorbed power
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Fig. 12. Full-scale of the prototype M4 linear power transfer
function showing effects of different PTO damping coefficients.
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Fig. 13. Optimised PTO damping coefficient for the entire
wave field at King George Sound.

Maximising the mean absorbed power for a WEC is critical
to the potential commercialisation of these types of devices
as it increases economic viability from requiring fewer
devices to operate, further reducing the environmental
impact from reduced footprint in the ocean. Using the
sliding window approach, variable damping optimisation
and therefore power output was implemented to each
predicted 10 s interval. This was completed for the entire
3-hour generated wave timeseries with significant wave
height of 0.625 m and peak period of 3 s.
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Fig. 14. Comparison between mean absorbed power for constant and variable damping coefficients for each 10s predicted intervals from

three-hour wave input.

Fig. 14 details 25-minutes of predicted 10 s intervals
using the NN and the corresponding optimised power
output, showing a large increase in comparison to a
constant damping coefficient of 190 kNms/rad. The
corresponding power output and CWR for the two
conditions can be found in Table VI. It can be noted the
power output doubles by introducing a variable damping
control system. However, this only represents one

TABLE VI

EFFECTS OF VARIABLE DAMPING COMPARED TO CONSTANT DAMPING
ON THE MEAN ABSORBED POWER AND CWR FOR THE GENERATED 3-

HOUR WAVE.
Damping type Mean absorbed power CWR
Constant damping 2.37 kW 64.8%
Variable damping 4.68 kKW 127.7%

significant wave height and peak period.

Further analysis was completed on the CWR over a
longer duration to capture more accurately the change in
CWR for different wave fields. This included calculating
the CWR for different 3-hour JONSWAP wave timeseries
with peak periods from 2.5 s to 6 s and a significant wave
height of 0.625 m. With variable PTO damping coefficients,
the expected increase in CWR for the time-domain can be
seen in Fig. 15. The M4 prototype WEC has a natural hinge
rotation frequency of 3.142 seconds which corresponds to
the maximum CWR of 1.4 for variable damping at a 3
second peak period. On average, the CWR was able to be
increased by 147.4%.

The increase in CWR highlights the advantages of
implementing a variable PTO damping control system for
WECs as a higher CWR indicates larger power capture of
the device. This can be beneficial for WEC co-location with
offshore developments aquaculture. More
significant WEC power capture decreases the reliance on
diesel generators. For implications involving powering

such as

other developments such as onshore housing, greater
power capture of a single device results in requiring
smaller scale of structures which  decreases

~% Constant damping
RN -G Variable damping
. M

CWR

% 5 ; 3‘5 :l JTS ; 5‘5 6
‘Wave period [s]
Fig. 15. Capture width ratio for constant damping coefficient
of Bd = 190 kNms/rad and variable damping coefficients.

foundations/moorings and maintenance, therefore

reducing costs.

V. LIMITATIONS AND FUTURE WORKS

Although the constructed neural network architecture
predicts 10 s wave elevation intervals accurately, these
short-term predictions may not be ideal from a mechanical
perspective. Requiring the PTO control system to change
the damping coefficient every 10 seconds puts
unnecessary strain on the device, possibly resulting in
further power losses. The integrated PTO system on the
M4 device is a hydrodynamic-electrical model where the
reference torque from the generator is fed back through a
gearbox to the platform. In this case, the linear rotational
damping coefficient would be varied by introducing a
counter torque. Although an electrical PTO control system
works much faster than a hydraulic system, implementing
this counter torque every 10 seconds may introduce
additional mechanical strain on the gearbox and require
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additional power. For the PTO control system to be
mechanically viable, the damping should vary in intervals
of at least 30 seconds. However, this extended prediction
length drastically decreases the accuracy of the neural
network’s predictions. To become mechanically viable and
predict larger time intervals requires further NN
hyperparameter fine tuning. Here, the time and feedback
delay can be increased to help improve the accuracy of
larger predictions. However, this may result in overfitting
the data processing
durations. All processing for this study was completed on
a laptop with a CORE 17 processor. Upgrades on
computational power can help mitigate the processing
larger prediction lengths.
Furthermore, the robustness of the NN model can be
increased via exploration of the exogenous data sets. In
this study, wind data relevant to the wave field was not
available. The inclusion of this in the exogenous data set
may increase the accuracy of predictions and allow for
longer prediction periods. Additionally, the model should
be compared to other forms of neural networks such as a
LSTM. This network is a type of recurrent NN designed to
handle sequences of data. They are effective for timeseries
forecasting and can capture long-term dependencies in the
data, therefore may provide accurate predictions for wave

and excessive computational

times and allow for

elevation.

The generated wave
unidirectional JONSWAP wave. However, this cannot
accurately represent real-life ocean waves as directional
spreading is generally prominent. Future work from this
study should include analysing the accuracy of the NN for
directional spreading in the wave field.

time series included a

VL CONCLUSIONS

This paper presents the investigation of utilising a
neural network to predict oncoming wave elevation of
unidirectional JONSWAP irregular waves. The predicted
wave elevation and spectrum were implemented into a
variable PTO damping system to increase the mean
absorbed power of the M4 WEC prototype device which
will be deployed in King George Sound in Albany,
This study used
autoregressive neural network with exogenous inputs to
predict the wave elevation for 10 s and 20 s intervals. A
sensitivity —analysis was
hyperparameters such as number of input and feedback
delay, prediction length, wave sampling frequency and
number of epochs. It was found that the optimal prediction
length for the architecture was no greater than 10 seconds
with a delay of N+10, sampling frequency of 3.5 Hz and 75
training epochs. For prediction lengths greater than 10
seconds, it was found that the processing time surpassed
the prediction length, therefore cannot be used in real-life
applications.

Using the predetermined network hyperparameters
from the sensitivity analysis, the energy spectrums were
deemed more accurate compared to the predicted wave

Western Australia. a nonlinear

conducted on network

elevations with R? values of 99.22% and 98.77%
respectively for the 10 s interval. However, the small
variability in true and predicted energy spectrum peaks
proved to have large implications on the absorbed power.
Due to this, it was deemed critical to ensure that the
accuracy of predictions for wave spectrums was to an
excellent standard. A sliding window approach was used
to predict the incoming wave elevation for the generated
3-hour timeseries in 10 s intervals. Here, variable damping
coefficients were used to increase the absorbed power and
CWR by an average of 147.4%. This is beneficial for WEC
co-locations with offshore developments and when
powering housing as the increased power capture allows
for reduced reliance on diesel generators and less marine
footprint therefore reducing costs.
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