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Abstract— This paper investigates the use of a nonlinear 
autoregression neural network for wave field predictions, 
and its implementation into a power-take off passive 
loading control system which tunes the damping coefficient 
for a wave energy converter. The wave energy converter 
considered in this study is a part of a multi-institutional 
demonstrator project which has seen the deployment of a 
moored multimodal multibody (M4) attenuator wave 
energy converter in King George Sound in Albany, Western 
Australia. The device consists of a 1-2-1 float configuration 
and is approximately 20 meters in length. The developed 
neural network was used to predict wave elevations and 
energy spectrums for 10-second and 20-second ahead of time 
intervals. Findings of this study show that the neural 
network was able to accurately predict up to 10 s intervals 
(where RMSE = 1.32E-02), however the accuracy of 
predictions fell for 20 s predictions (where RMSE = 5.20E-
02). A linear numerical model of the prototype M4 device 
was used to find the optimal PTO damping coefficient for 
the observed wave fields at King George Sound. This 
allowed for optimisation of mean absorbed power for a 
generated 3-hour JONSWAP unidirectional timeseries 
using variable damping coefficients. Here, the power output 
was able to be increased by 106% for a significant wave 
height of 0.63 m and peak period of 3 s and resulted in an 
overall increase in capture width ratio across the 3-hour 
wave dataset. 
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I. INTRODUCTION 

ONCERNS regarding increasing energy demands 
and environmental impact  from carbon dioxide 

emissions has seen an interest for the development of 
sustainable energy from renewable sources. With oceans 
covering 71% of the Earth’s surface, there is large potential 
for wave energy to become a viable source of renewable 
energy. Swells on Australia’s South-West coastline is 
predominantly large from uninterrupted weather systems 
migrating from the Southern Indian Ocean [1], resulting in 
significant wave energy potential. Furthermore, the ocean 
represents one of the world’s largest unexplored sources 
of energy, with waves providing energetic features 
throughout the day and night and throughout the seasons. 
It is noted that waves could provide electricity up to 90% 
of the time, but wind and solar power systems may only 
create electricity 20-30% of the time [2]. Here, Wave Energy 
Converters are being researched and developed as a 
potential solution to these recent concerns. However, they 
are yet to become commercialised, and mass produced.  

 According to their working principle, WEC’s can be 
classified into three main categories: (1) oscillating-body 
which utilise a float, buoy or pitching device to extract 
energy from waves, (2) oscillating water column (OWC) 
where wave motion causes air flow within a chamber 
subsequently driving a turbine, and (3) overtopping 
devices in which water overflows the device through 
hydraulic turbines. Various forms of WEC’s have been 
previously explored, including the King Island Project 

S. Hoekstra was at the Centre for Maritime Engineering and 
Hydrodynamics, Australian Maritime College, University of 
Tasmania, Locked Bag 1395, Launceston, Tasmania 7250, Australia. 
They are now at DOF Australia, 181 St Georges Terrace, Perth WA 
6000 (e-mail: Samantha.hoekstra.4@gmail.com) 

D. Howe is with the Centre for Maritime Engineering and 
Hydrodynamics, Australian Maritime College, University of 
Tasmania, Locked Bag 1395, Launceston, Tasmania 7250, Australia. 
They are also with the Blue Economy Cooperative Research Centre, 
Launceston, Tasmania 7250, Australia (e-mail: 
damon.howe@utas.edu.au). 

A. Kurniawan is with Marine Energy Research Australia, The 
University of Western Australia, 35 Stirling Terrace, Albany, Western 
Australia 6330, Australia (e-mail: adi.kurniawan@uwa.edu.au). 

Digital Object Identifier: https://doi.org/10.36688/imej.8.287-297 

Predictive Modelling and Optimisation of 
Power Generation for the M4 Wave Energy 

Converter: A Deep Learning Approach 
S. Hoekstra, D. Howe, A. Kurniawan 

C 



INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 8, NO. 3, SEPTEMBER 2025 288

from Wave Swell Energy.  This project saw the 
deployment of the UniWave200 at Grassy, King Island, 
Tasmania which successfully operated for 12 months. The 
device was an oscillating water column type, spanning 
22.1 m in long 13.6 m wide and 14.2 m tall, and had a 
maximum output of 200 kW [3]. Although the project was 
successful, the large size and small power output 
highlights one of the problems which WEC’s face for 
becoming viable for mass production and 
commercialisation. This suggests that further research is 
needed to develop smaller WEC’s units capable of 
harvesting higher levels of electricity from the ocean’s 
waves. For a wave energy converter, typically the major 
costs are associated with foundations and moorings, 
structure, and maintenance and operations. Optimising 
the power capture allows for a lower number of required 
structures to achieve the desired power output and 
therefore reducing costs. 
 This paper sets out to investigate increasing the 
generated power output from a Moored Multimodal 
Multibody (M4) WEC through incorporating predictive 
modelling from a neural network into a PTO passive 
damping control system. Here, a nonlinear autoregressive 
neural network is used to predict oncoming wave 
elevation which produces an optimal rotational damping 
coefficient which correlates to the specific PTO system 
used within the device. The materials of this paper are set 
out as follows: Section II provides insight into the M4 WEC 
and applications of neural networks, Section III describes 
the methodology used within this paper, Section IV 
provides results and discussions. 

II. BACKGROUND INFORMATION  

A. M4 wave energy converter 
The M4 WEC is of the attenuator type which is a part of 

a multi-institutional program funded by Blue Economy 
CRC and the Western Australian Government. The project 
aimed to deploy a demonstrator device in King George 
Sound, Albany, Western Australia. The device is 
approximately 20 m in length and consists of two framed 
rigid bodies, capturing energy through the relative motion 
of multiple floats in a 1-2-1 configuration, shown in Fig. 1. 
A triangular formation of the first three floats makes up 
the forward body where the final float is connected on the 
aft body via a hinge coupled with a PTO system. The floats 
are arranged in increasing diameter from forward to aft 
allowing the device to naturally weathervane from a single 
point mooring, aligning itself parallel to wave propagation 
direction. The WEC couples heave, surge, and pitch 
excitation to enhance energy capture by combining the 
principles of point absorber and hinge-raft converters [4]. 
The M4 design investigated in this study has been formed 
from previous studies which investigated design principle 
[5]. Initially, three rectangular floats were arranged 
longitudinally with equal distance of half a wavelength. 
Optimisation of the M4 device found that reducing the 

drag coefficient of the three floats by introducing a 
rounded base increased the energy capture by up to 60% 
[6]. Furthermore, increasing the bow to mid float spacing 
to be more than the mid to stern float spacing found 
improvements to the energy capture [7]. A study explored 
the influence of increasing the number of floats from 3 to 8 
in various configurations through a linear diffraction time-
domain model which saw significant increase in energy 
capture [8]. However, considering the levelised cost of 
electricity (LCOE), the 6-float 1-3-2 and the 4-float 1-2-1 
configurations were found to be more beneficial. Both of 
these configurations have been previously researched for 
energy yield in several sites. A study conducted by [9] 
compared the mean power output of a 3-float 
configuration in two potential sites: Albany, Western 
Australia and Orkney, United Kingdom. The power 
performance of the two sites were found to be similar, but 
the severity of extreme waves at Albany is considerably 
less and therefore more desirable from a survivability 
perspective.  

Further potential optimisation of the M4 device may 
include optimisation of the PTO system. The PTO for the 
M4 device includes an electrical drive train with a 
permanent magnet (PM) generator which allows for 
variable torque in the form of a damping coefficient in 
relation to wave conditions at site [10]. Wave climate is 
variable in nature, resulting in implications for WEC 
energy capture and the efficiency of the device. Here, it 
may be beneficial to implement a passive loading control 
system which tunes the PTO damping coefficient relative 
to the oncoming wave field, therefore optimising power 
generation for temporal wave fluctuations. For example, 
for rotational motion the passive loading control system 
will provide a given counter torque for a certain angular 
velocity. PTO control systems have been investigated 
previously on a heaving WEC by incorporating varying 
PTO damping through utilising the Sliding Discrete 
Fourier transform technique to estimate local wave 
frequency [11]. Here, the PTO damping was adjusted 
according to the estimated frequency. Results showed 
power capture increased from 1.64% to 10.38%. PTO 
optimisation of the 3-float configuration M4 device was 

 
Fig. 1. 3D-schematic of the 1-2-1 M4 configuration showing 

increasing float diameter, excluding power take-off. 
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explored through incorporating a linear non-casusal 
controller for damping pitch control [12]. The study 
predicted the incoming sea state with a Kalman filter and 
used this information in the non-casusal controller to 
contribute to the controller’s decision making. Numerical 
results showed that the power capture was dramatically 
increased with this technique. Other methods for 
predicting the incoming sea state used for PTO controls 
include neural networks. This was explored for a point 
absorber which used a multi-layer artificial neural 
network to forecast short-term wave forces [13], which saw 
an increased energy absorption of 60-80%.  

B. Neural networks 
Neural networks (NN’s) work on the basis of the human 

brain where, in the simplest form, a series on nodes are 
connected in three layers (see Fig. 2): an input layer 
including initial data for the network, a hidden layer 
where the main computational processing occurs, and an 
output layer which processes results for the given input 
[14]. NNs are used to provide predictions based on the 
input training data sets. Various NNs have been 
developed for applications ranging from classification, 
speech recognition, timeseries prediction and system 
control. Types of NNs include Convolutional Neural 
Networks (CNN), Long Short-Term Memory (LSTM) 
networks, Deep Neural Network (DNN), and Recurrent 
Neural Networks (RNN) [15].  

NNs have previously been used in the engineering 
industry to predict longitudinal-lateral dynamics of an 
autonomous vehicle [16]. Additionally, a developed DNN 
was used for time-varying multibody dynamic response of 
a crank shaft and connecting rod [17]. In WEC 
applications, the accuracy of predicting power generation 
was compared through different types of NNs [18]. The 
accuracy of NNs is partially dependent on network 
architecture hyperparameters such as batch size, epochs, 
and number of hidden layers. In the case of forecasting in 
the time-domain, both computational speed and accuracy 
of predictions play a critical role when forming 
hyperparameters of the NN. A previous study conducted 
a sensitivity analysis on the number of hidden layers with 
a range of neurons in each layer using the heave motion of 
a point absorber [19]. It was found that two hidden layers 
produced more accurate predictions compared to a single 
layer for the specified range of neurons. However, it was 

found that the addition of the second hidden layer and 
neurons increased the computational processing time. 
Therefore, it is critical to find a balance between these 
parameters utilising NN hyperparameters.  

C. Problem statement  
Although sufficient research has been conducted on the 

M4 device and implementing PTO control systems on 
other forms of WECs to optimise power capture by 
forecasting the sea state, minimal research has been 
conducted on combining these by using a neural network 
to optimise the M4 device. Advantages of using a NN over 
other methods such as Kalman filter is that NNs can be 
complex with their number of layers and neurons and their 
parameters are learnt, whereas Kalman filter rely on a 
precise mathematical model of the system [20]. Therefore, 
a NN allows the control system to be flexible and be used 
in different locations on different WEC devices. The main 
scope of this study is to investigate the effects of a PTO 
damping control system on the M4 WEC by utilising a 
nonlinear autoregressive neural network to predict the 
oncoming wave elevation.  

III. METHODOLOGY 

D. Nonlinear Autoregressive Neural Networks (NARX) 
Nonlinear Autoregressive (NAR) neural networks are a 

subclass of RNNs which are one of the well-known 
machine learning methods to model nonlinear dynamic 
systems. NAR is a time delay recurrent neural network 
which learns a series of patterns and nonlinear features 
based on feedback connections through different layers of 
the network [21]. It generally provides good multi-step 
forecasting in the short term. A modification of the NAR 
network is the NARX network which incorporates 
exogenous timeseries into the input training data. This 
exogenous timeseries is based on external data which has 
an impact on what the neural network is predicting. In the 
case of wave forecasting, this external data could be in the 
form of wind speed and directional data, tidal data, 
geographical features and historical wave data. The 
inclusion of the exogenous series is expected to provide 
improvements to the accuracy of predictions as these 
parameters can influence the wave climate. NARX 
networks are capable of making multistep ahead 
predictions in the time-domain, defined by (1) [22]. This is 
used for wave forecasting in this paper.  

 
𝑌(𝑡) = 𝑓൫𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 −

𝑛ௗ), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(1 − 𝑛ௗ)൯  
(1)

where, 𝑓 is the activation function, 𝑌(𝑡) is the predicted 
output sequence, 𝑦(𝑡)  is the input sequence, 𝑢(𝑡)  is the 
exogenous sequence and 𝑛ௗ is the specified time delay. 

A typical NARX network consists of an input layer, one 
or more hidden layers and an output layer. The NARX 
network architecture used in this study included an open 

 
Fig. 2. Simple neural network architecture showing series of 

nodes connecting the input, hidden and output layers. 
 



INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 8, NO. 3, SEPTEMBER 2025 290

loop used for network training and a closed loop used for 
predictions, as shown in Fig. 3. For the open loop, both the 
input and exogenous timeseries data were used to define 
initial weights and biases (input layer states). Here, no 
feedback connections are used forming an ‘open loop’. The 
initial weights and biases were then used in a closed loop 
along with a predefined prediction timeseries to forecast 
successive timesteps. In the closed loop, feedback 
connections are used for dynamic output predictions 
which are then postprocessed via comparison to expected 
wave elevation values. The model is trained using the 
Levenberg-Marquardt backpropagation training function 
which updates weights and bias according to Levenberg-
Marquardt optimisation as this has previously been 
defined as the fastest backpropagation algorithm [23]. In 
this study, the number of input and feedback time delays, 
wave sampling frequency, prediction time length and 
number of epochs were used as parameters for 
optimisation of the prediction performance.  

E. Neural network performance evaluation 
Three criteria, Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE) and coefficient of determination 
(R2) are employed to evaluate the neural networks 
prediction performance. Values of MSE and RMSE close to 
zero and values of R2 close to one show agreement between 
the true wave elevation and the model’s predictions. These 
criteria are calculated below through  (2), (3) and (4). 

 𝑀𝑆𝐸 =
1

𝑛
෍ (𝑦௜ − 𝑦పෝ)ଶ

௡

௜ୀଵ
 (2)

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 (3)

 𝑅ଶ = 1 −
𝑛 × 𝑀𝑆𝐸

∑ (𝑦௜ − 𝑦ത௜)
௡
௜ୀଵ

 (4)

where, 𝑛 is the number of observations, 𝑦ො௜ is the 
predicted values and 𝑦ത௜ is the mean of the true values. 

F. Wave elevation data sets 
Absorbed power of a WEC is related to the wave 

elevation and the PTO system. Therefore, the NN predicts 
wave elevation for a specified time interval from 
timeseries JONSWAP data correlating to what can be seen 
at King George Sound. Fig. 4(a) presents the bivariate 
probability distribution of significant wave height and 
mean period recorded from a Spotter wave buoy at the 
target location from January 2021 to January 2022. From 
this, the most predominant significant wave height of 
0.625 m and mean period of 5.50 s were used to create 
synthetic unidirectional 3-hour JONSWAP timeseries data 
for the NN. As the target location is in shallow waters, the 
peak enhancement factor of the JONSWAP spectrum was 
1.  Fig. 4(b) represents the generated JONSWAP spectrum 
for the created wave timeseries.  

 
Fig. 3. Nonlinear autoregressive neural network architecture used in this study showing the defining parameters 

 

 
Fig. 4. (a) bivariate probability distribution of the significant 

wave height and mean period at King George Sound from January 
2021 to January 2022; (b) Generated JONSWAP spectral density 
for a 3-hour irregular wave, gamma = 3. 
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G. Data pre-processing 
Pre-processing the timeseries data is an essential step 
when determining the inputs for the NN. It is essential to 
note that during the pre-processing process, the timeseries 
data is split into an initial 30-minute duration to save 
computational power and training time. This series was 
then further split into wave target and exogenous series, 
prediction series and validation series shown in Fig. 5(a). 
The data is split according to the number of time steps (N) 
required to predict a specified length of time. The target 
series, or training series, includes the portioned 30-minute 
wave elevation data from 𝑡 = 𝑡𝑖𝑚𝑒(1, … 𝑒𝑛𝑑 − 𝑁). The 
exogenous series uses historical wave data. In the case of 
this study, the historical wave data is shifted back N time 
steps. The prediction series uses the last N values from the 
target series and the validation data uses the last N values 
from the 30-minute series. For successive predictions, a 
sliding window approach was implemented. In this case, 
the target series is updated containing the forecasted 
observations and shifted forward N time steps, as shown 
in Window 2 of Fig. 5(b). Then the NARXNET is re-trained 
with the new 30-minute timeseries, forecasting the next 
series of wave elevation. This process is repeated for the 
remaining 3-hour timeseries.  

Fig. 6(a) shows the target series data used for open loop 

training for the created wave. Additionally, it shows the 

prediction series used in closed loop forecasting and the 
validation series. These can be seen in further detail in Fig. 
6(b). 

H. Numerical model  
A numerical model of the M4 device was developed by 

Kurniawan et al. [24] which provides a linear, frequency-
domain model based on the generalised mode approach. 
The model allows for the estimation of power, motions, 
relative freeboard, among other performance parameters 
to be computed. In this study, the linear power transfer 
function (see Fig. 7) was used to calculate the mean 
absorbed power for the wave spectrum. The 190 kNms/rad 
damping coefficient is representative of the full-scale 
model.  

I. Mean absorbed power and capture width ratio of WECs in 
irregular waves 

For irregular waves, the mean absorbed power defined 
by an energy spectrum can be written as  

  
𝑃௖

ூோோ = ∫ 2𝑆ఎ(𝑓)𝑃௖
௅்ி(𝑓)𝑑𝑓

ஶ

଴
  

 

 
(5) 

 
Fig. 5. (a) Data structure of NARXNET for singular 30-minute timeseries; (b) sliding window approach used for successive predictions 

for full 3-hour timeseries. 
 

 
Fig. 6. (a) 30-minute JONSWAP scaled timeseries data used for 

NARXNET forecasting; (b) correlating scaled prediction series 
and validation series. 
 

 
Fig. 7. Full-scale prototype M4 linear power transfer function 

with PTO damping coefficient of 190 kNms/rad. 
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where, 𝑃௖
௅்ி is the linear power transfer function, and 

𝑆ఎ(𝑓) is the energy spectrum of the irregular wave.  
The mean incident wave power per unit width for a 

significant wave height 𝐻௦ in irregular waves (assuming 
deep water) is written as  

  

𝑃௜
ூோோ =

ଵ

ଵ଺
𝜌𝑔𝐻௦

ଶ𝑐௚௘  

 

 
 (6) 

where 𝑐௚௘ is the group velocity corresponding to the 
energy period (𝑇௘), 𝑐௚௘ = 𝑔𝑇௘/4𝜋 in deep water. As 
described in [5], 𝑇௘ = 0.78𝑇௣ for 𝛾 = 1.0 and 𝑇௘ = 0.84𝑇௣ for 
𝛾 = 3.3 with 𝛾 being the peak enhancement factor of the 
JONWAP spectrum.  

 The capture width ratio (CWR) indicates the power 
absorption capability of any WEC and is defined as 

  

𝐶𝑊𝑅 =
௉೎

಺ೃೃ

௉೔
಺ೃೃௐ

   

 

 
 (7) 

where W is the device width perpendicular to wave 
propagation direction.  

IV. RESULTS AND DISCUSSION 

J. Prediction variables study 
Sensitivity analysis is critical for the development of a 

neural network in determining parameters which will 
provide accurate results. This was conducted to evaluate 
the effects of important input variables on the accuracy of 
the network predictions and the required computational 
time. In this case, such parameters included the time delay, 
prediction length, sample frequency, and number of 
epochs. 

1) Effect of time delay and prediction length 
A sensitivity study was conducted on the input and 

feedback time delay to determine the ideal number of time 
steps which are fed into each iteration of training for 
accurate wave field predictions, whilst minimising 
processing computational duration. As a forecasting 
method for PTO damping control, it is critical that the 
computational duration is less than the prediction time 
frame. Optimising the delay requires a good balance 
between computational duration and accuracy while 
avoiding overfitting and underfitting the data. Large 
delays result in overfit data with large computational 
processing. For this sensitivity analysis, two prediction 
time lengths were studied of a 10 s and 20 s duration for a 
significant wave height of 0.625 m and peak period of 5.50 
s.  

Error metrics such as MSE, RMSE and R2 were used to 
test the accuracy for each time delay and prediction length. 
Table I details the sensitivity analysis for a 10 s prediction 
length where the error metrics correspond to the wave 
elevation predictions. It can be noted that increasing the 
delay increases the accuracy of predictions, as increasing 
the delay increases the number of previous time-steps that 
the network considers when making future predictions. A 

delay of the prediction time steps (N) plus 10 provided 
good correlation between predictions and validation data 
whilst computational duration remains less than the 
prediction length. Table II details the sensitivity analysis 
for a duration of 20 s. The N+20 delay depicts good 
accuracy; however, the computational duration is larger 
than the prediction time which introduces accumulating 
lag in long term predictions. Due to this, the NN predicts 
up to 10 s maximum with a delay of N+10. 

2) Effect of sampling frequency  
 A sensitivity analysis was performed on the sampling 

frequency of the wave timeseries data to explore the effects 
on accuracy and computational duration from variability 
in the number of data timesteps (see Table III). The 
quantity of data used in training and predictions can affect 
the accuracy and training time of NNs as large data sets 
require much more processing capabilities. This analysis 
was conducted on the predominant 30-minute wave 
timeseries with sampling frequencies ranging from 3.5 Hz 
to 7.8 Hz. It can be noted that only the smallest sample 
frequency required less processing time than prediction 
length. Additionally, the accuracy of predictions decreases 
with increased sample frequency. However, this further 
increases the processing time. In this case, a sample 
frequency of 3.5 Hz was used throughout the rest of this 
study. 

TABLE III 
NN SAMPLE FREQUENCY SENSITIVITY ANALYSIS WITH HS = 0.625 M AND 

TP = 5.5 S, AND PREDICTION LENGTH OF 10 S. 

Sample 
frequency 
[Hz] 

Computational 
time [s] 

MSE  RMSE R2 [%] 

3.54 7 1.93E-04 1.39E-02 98.65 
4.95 13 3.53E-04 1.88E-02 90.59 
6.36 25 7.11E-03 8.43E-02 54.07 
7.78 49 7.64E-03 9.04E-02 45.99 

 

TABLE I 
 NN DELAY SENSITIVITY ANALYSIS WITH A PREDICTION LENGTH OF 10 S 

(N = 36), HS = 0.625 M AND TP = 5.5 S. 

Delay Computational 
time [s] 

MSE  RMSE R2 
[%] 

10 1 8.87E-03 9.41E-02 37.91 
20 2 3.31E-03 5.74E-02 76.86 
30 4 3.08E-03 5.55E-02 78.46 
40 6 2.20E-03 4.69E-02 84.59 
N+10 7 4.79E-04 2.19E-02 96.65 

TABLE II 
NN DELAY SENSITIVITY ANALYSIS WITH A PREDICTION LENGTH OF 20 S 

(N = 72), HS = 0.625 M AND TP = 5.5 S. 

Delay Computational 
time [s] 

MSE  RMSE R2 [%] 

30 4 1.35E-02 1.16E-01 -29.26 
40 6 8.52E-03 9.23E-02 18.32 
50 7 3.39E-03 5.82E-02 67.51 
60 11 8.66E-03 9.31E-02 16.92 
N+20 22 1.80E-03 4.25E-02 82.71 
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3) Effect of NN parameters  
The effects of training epochs on neural network 

accuracy were also analysed. Epochs is a hyperparameter 
of neural networks which defines the number of times the 
learning algorithm works through the training series. The 
quantity of epochs used affects the accuracy and training 
time, as too large of a number may increase the 
computational duration with little gain in accuracy. The 
epoch sensitivity analysis was conducted for number of 
epochs from 25 to 100 in 25 increments. The number of 
hidden neurons was constant at 5 and the generated wave 
timeseries was used for each run. Table V details the 
resulting error metrics for each run. As the number of 
epochs increases, it can clearly be noted from Table V that 

the accuracy converges at 75 whilst retaining a training 
time less than the prediction length.  

K. Neural network predictions 
A non-linear autoregressive NN was selected for this 

study because of its flexibility and capability of handling 
complex timeseries data. The NARX NN allows for 
quicker processing and training times compared to other 
NNs such as LSTMs. Upon creation and hyperparameter 
fine tuning of the NN, the wave elevation for 10 s and 20 s 
intervals were predicted for the generated JONSWAP 
spectrum. Although correlation of true and predicted 
wave elevation is important for showing the accuracy of 
the NN, the predictions of the corresponding energy 
spectrum is the critical parameter for determining the 
mean absorbed power when following (5). This means that 
the accuracy of the energy spectrum predictions is far 
more important in the application of this study. The error 
metrics for both 10 s and 20 s prediction intervals are 
detailed in Table IV. These were trained with a delay of 
N+10 and epochs of 75 for each interval with training times 
of 5 s and 16 s. When comparing the error metrics for wave 
elevation predictions to energy spectrum predictions, the 
neural network can predict the energy spectrum more 
accurately. Although the 20 s prediction interval was 
deemed unfeasible due to processing times being longer 
than prediction times, the accuracy of the energy spectrum 
for 20 s interval and a delay of N+10 shows promising 
results for the NN being capable of predicting longer time 
frames with further hyperparameter tuning. However, 
careful consideration must go into ensuring the training 
time is less than the prediction time. Fig. 8 analyses the 
wave elevation predictions for the 10 s interval where the 

corresponding energy spectrum predictions are detailed in 
Fig. 9. Additionally, the 20 s wave elevation predictions 
can be found in Fig. 10 with corresponding energy 
spectrums in Fig. 11.  

In addition to the error metrics, the accuracy of the 10 s 
predictions was evaluated through comparing the 
predicted data to the true data in Fig. 8(b) and Fig. 9(b) via 
providing a visual representation where the linear 
regression line indicates a perfect prediction. Taking note 
of Fig. 9(a), an observable deviation in the height of the 
predicted energy spectrum peak shows the NN slightly 
over predicts the energy spectrum. This deviation is the 
resultant of the small inaccuracies between wave 
elevations in Fig. 8(a). Although the error metrics show the 
energy spectrum has more correlation between true and 
predicted values, the small deviation in peak heights can 
result in approximately 30% difference in mean absorbed 
power. Because of this, it is critical to ensure high accuracy 
in energy spectrum predictions.  

TABLE V 
NN EPOCH SENSITIVITY ANALYSIS WITH HS = 0.625 M AND TP = 5.5 S, 

AND PREDICTION LENGTH OF 10 S. 

Epochs Computational 
time [s] 

MSE  RMSE R2 [%] 

25 2 2.67E-03 5.16E-02 76.12 

50 4 1.09E-03 4.36E-02 82.99 

75 5 5.73E-04 2.39E-02 94.88 

100 7 6.66E-04 2.58E-02 94.03 

 

TABLE IV 
ERROR METRICS FOR 10 S AND 20 S PREDICTION LENGTHS FOR THE 

GENERATED WAVE TIMESERIES. 

 Prediction 
length [s] 

MSE RMSE R2 [%] 

Time domain 
analysis 

10 1.75E-04 1.32E-02 98.77 
20 2.71E-03 5.20E-02 74.00 

Spectral domain 
analysis 

10 5.45E-08 2.34E-04 99.22 
20 8.06E-07 8.98E-04 84.95 

 

Fig. 8. (a) 10 s wave elevation prediction using the first 30-minute 
data set; (b) the 10 s predicted wave elevation against the true wave 
elevation. 

Fig. 9. (a) corresponding energy spectrum for validation and 
prediction data for 10 s interval; (b) validation energy spectrum 
against true energy spectrum. 
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Fig. 10 (a) Illustrates the predicted timeseries for 20 s. It 
can be noted that after approximately 10 s, the accuracy of 
wave elevation predictions decreases as shown in Fig. 
10(b). Much like the 10 s prediction, the error metrics for 
the energy spectrum shows more accurate predictions 
compared to wave elevation as per Table IV. However, 
there are big differences between energy spectrum peaks 
in Fig. 11(a), which have an impact on the calculated 
absorbed power. 

L. Optimised PTO damping  
The PTO damping coefficient is significant to the power 

absorption of WECs. The M4’s damping coefficient is 
assumed to be a linear rotational damping type measured 
through the correlation between PTO torque and angular 
velocity. To provide insight into the dependence of 
optimised damping coefficients and the maximum power 
output, a comparison is made on the linear power transfer 
function for three damping coefficients (see Fig. 12). 
Referring to (5), a relationship can be formed between the 
optimal damping coefficient and the peak wave period of 
the energy spectrum. Although increasing the damping 
coefficient reduces the height of the peak frequency, it 
increases the bandwidth of all other peaks. This can be 
ideal for peak wave periods outside of the 3.5 s – 5 s range 
increasing the mean absorbed power. The optimal 
damping coefficient which provides the maximum power 
was calculated for the wave field at King George Sound, as 
seen in Fig. 13. Here, a peak period range between 3.5 s and 
5 s requires the smallest damping coefficient from falling 

within the bandwidth of the maximum peak of the transfer 
function. Anything which lies outside of this range 
gradually increases either side. This optimal damping 
coefficient is calculated solely on the maximum absorbed 
power and does not consider the limitations of real-time 
passive loading control which requires power from the 
device. Upon prediction of the wave elevation through the 
NARXNET, these optimised damping values were used 
along with their corresponding transfer function to 
calculate the mean absorbed power for the prediction time 
length.  

M. Optimised mean absorbed power 

Maximising the mean absorbed power for a WEC is critical 
to the potential commercialisation of these types of devices 
as it increases economic viability from requiring fewer 
devices to operate, further reducing the environmental 
impact from reduced footprint in the ocean. Using the 
sliding window approach, variable damping optimisation 
and therefore power output was implemented to each 
predicted 10 s interval. This was completed for the entire 
3-hour generated wave timeseries with significant wave 
height of 0.625 m and peak period of 3 s.  
  

 
Fig. 10. (a) 20 s wave elevation prediction using the first 30-

minute data set; (b) the 20 s predicted wave elevation against the 
true wave elevation. 

 
Fig. 11. (a) corresponding energy spectrum for 20 s interval; (b) 

validation energy spectrum against true energy spectrum. 
 

Fig. 12. Full-scale of the prototype M4 linear power transfer 
function showing effects of different PTO damping coefficients. 

Fig. 13. Optimised PTO damping coefficient for the entire 
wave field at King George Sound. 
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Fig. 14  details 25-minutes of predicted 10 s intervals 
using the NN and the corresponding optimised power 
output, showing a large increase in comparison to a 
constant damping coefficient of 190 kNms/rad. The 
corresponding power output and CWR for the two 
conditions can be found in Table VI. It can be noted the 
power output doubles by introducing a variable damping 
control system. However, this only represents one 

significant wave height and peak period.  
Further analysis was completed on the CWR over a 

longer duration to capture more accurately the change in 
CWR for different wave fields. This included calculating 
the CWR for different 3-hour JONSWAP wave timeseries 
with peak periods from 2.5 s to 6 s and a significant wave 
height of 0.625 m. With variable PTO damping coefficients, 
the expected increase in CWR for the time-domain can be 
seen in Fig. 15.  The M4 prototype WEC has a natural hinge 
rotation frequency of 3.142 seconds which corresponds to 
the maximum CWR of 1.4 for variable damping at a 3 
second peak period. On average, the CWR was able to be 
increased by 147.4%.  

The increase in CWR highlights the advantages of 
implementing a variable PTO damping control system for 
WECs as a higher CWR indicates larger power capture of 
the device. This can be beneficial for WEC co-location with 
offshore developments such as aquaculture. More 
significant WEC power capture decreases the reliance on 
diesel generators. For implications involving powering 

other developments such as onshore housing, greater 
power capture of a single device results in requiring 
smaller scale of structures which decreases 

foundations/moorings and maintenance, therefore 
reducing costs. 

V. LIMITATIONS AND FUTURE WORKS 

Although the constructed neural network architecture 
predicts 10 s wave elevation intervals accurately, these 
short-term predictions may not be ideal from a mechanical 
perspective. Requiring the PTO control system to change 
the damping coefficient every 10 seconds puts 
unnecessary strain on the device, possibly resulting in 
further power losses. The integrated PTO system on the 
M4 device is a hydrodynamic-electrical model where the 
reference torque from the generator is fed back through a 
gearbox to the platform. In this case, the linear rotational 
damping coefficient would be varied by introducing a 
counter torque. Although an electrical PTO control system 
works much faster than a hydraulic system, implementing 
this counter torque every 10 seconds may introduce 
additional mechanical strain on the gearbox and require 

 
Fig. 14. Comparison between mean absorbed power for constant and variable damping coefficients for each 10s predicted intervals from 

three-hour wave input. 

TABLE VI 
 EFFECTS OF VARIABLE DAMPING COMPARED TO CONSTANT DAMPING 
ON THE MEAN ABSORBED POWER AND CWR FOR THE GENERATED 3-

HOUR WAVE. 

Damping type Mean absorbed power CWR 

Constant damping 2.37 kW 64.8% 

Variable damping  4.68 kW 127.7% 

 

 
Fig. 15. Capture width ratio for constant damping coefficient 

of Bd = 190 kNms/rad and variable damping coefficients. 
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additional power. For the PTO control system to be 
mechanically viable, the damping should vary in intervals 
of at least 30 seconds. However, this extended prediction 
length drastically decreases the accuracy of the neural 
network’s predictions. To become mechanically viable and 
predict larger time intervals requires further NN 
hyperparameter fine tuning. Here, the time and feedback 
delay can be increased to help improve the accuracy of 
larger predictions. However, this may result in overfitting 
the data and excessive computational processing 
durations. All processing for this study was completed on 
a laptop with a CORE I7 processor. Upgrades on 
computational power can help mitigate the processing 
times and allow for larger prediction lengths. 
Furthermore, the robustness of the NN model can be 
increased via exploration of the exogenous data sets. In 
this study, wind data relevant to the wave field was not 
available. The inclusion of this in the exogenous data set 
may increase the accuracy of predictions and allow for 
longer prediction periods. Additionally, the model should 
be compared to other forms of neural networks such as a 
LSTM. This network is a type of recurrent NN designed to 
handle sequences of data. They are effective for timeseries 
forecasting and can capture long-term dependencies in the 
data, therefore may provide accurate predictions for wave 
elevation. 

The generated wave time series included a 
unidirectional JONSWAP wave. However, this cannot 
accurately represent real-life ocean waves as directional 
spreading is generally prominent. Future work from this 
study should include analysing the accuracy of the NN for 
directional spreading in the wave field.  

VI. CONCLUSIONS 

This paper presents the investigation of utilising a 
neural network to predict oncoming wave elevation of 
unidirectional JONSWAP irregular waves. The predicted 
wave elevation and spectrum were implemented into a 
variable PTO damping system to increase the mean 
absorbed power of the M4 WEC prototype device which 
will be deployed in King George Sound in Albany, 
Western Australia. This study used a nonlinear 
autoregressive neural network with exogenous inputs to 
predict the wave elevation for 10 s and 20 s intervals. A 
sensitivity analysis was conducted on network 
hyperparameters such as number of input and feedback 
delay, prediction length, wave sampling frequency and 
number of epochs. It was found that the optimal prediction 
length for the architecture was no greater than 10 seconds 
with a delay of N+10, sampling frequency of 3.5 Hz and 75 
training epochs. For prediction lengths greater than 10 
seconds, it was found that the processing time surpassed 
the prediction length, therefore cannot be used in real-life 
applications.  

Using the predetermined network hyperparameters 
from the sensitivity analysis, the energy spectrums were 
deemed more accurate compared to the predicted wave 

elevations with R2 values of 99.22% and 98.77% 
respectively for the 10 s interval. However, the small 
variability in true and predicted energy spectrum peaks 
proved to have large implications on the absorbed power. 
Due to this, it was deemed critical to ensure that the 
accuracy of predictions for wave spectrums was to an 
excellent standard. A sliding window approach was used 
to predict the incoming wave elevation for the generated 
3-hour timeseries in 10 s intervals. Here, variable damping 
coefficients were used to increase the absorbed power and 
CWR by an average of 147.4%. This is beneficial for WEC 
co-locations with offshore developments and when 
powering housing as the increased power capture allows 
for reduced reliance on diesel generators and less marine 
footprint therefore reducing costs.  
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