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A two-scale blockage correction for an array
of tidal turbines

Daniel Dehtyriov, Christopher R. Vogel, and Richard H. J. Willden

Abstract—This work presents an analytical blockage
correction for co-planar arrays of tidal turbines based on
two-scale momentum theory. The study aims to address
the issue of correcting blockage effects for arrays where
constructive interference between turbines can significantly
improve performance. The proposed analytical model is
validated by correcting Reynolds-Averaged Navier-Stokes
computations of turbine arrays across a range of realistic
tip-to-tip spacings (local blockage) and channel widths
(global blockage) to free-flow conditions, thereby demon-
strating its validity and broad applicability. By comparing
the proposed two-scale correction with a single turbine
correction, the necessity of the model is highlighted. Ad-
ditionally, an iterative method to apply the correction is
presented. This novel correction method allows for the
decoupling of local and global blockage effects, enabling
the isolation and quantification of the local blockage effect
observed in laboratory-scale experiments. The blockage
correction will further allow for comparisons of perfor-
mance between arrays , and allow for an improved under-
standing of how tidal turbine arrays perform in-situ.

Index Terms—Tidal energy, Blockage correction, Axial-
flow turbines, Tidal turbine fence, Two-scale momentum
theory

I. INTRODUCTION

ALTHOUGH the Lanchester-Betz [1], [2] limit pro-
vides an upper bound to the power extraction of

an idealised turbine in an unconstrained flow, block-
age can be used to constrain the flow to raise this
theoretical limit. This has been particularly relevant
in tidal channels [3], where both the sea-bed and the
free surface of the sea constrain the expansion of the
stream-tube which encloses the turbine area. It was
shown that for even modest increases in the global
blockage ratio BG, the ratio of swept turbine area to
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channel cross-section area, the power coefficient can
significantly exceed the Lanchester-Betz limit. Con-
straining the flow, therefore, provides a mechanism
by which the power extraction efficiency of turbines
can be significantly enhanced. Extensions of this model
have included the influence of free-surface deformation
(non-zero Froude numbers) [4] and the development of
an updated blade element momentum theory method
for tidal turbines [5].

The ratio of swept rotor area to channel cross section,
represented by the global blockage ratio, is however
typically very small for commercial-scale tidal energy
extraction [6], and turbines often cannot be placed
to cover the entire channel width due to practical
constraints such as bathymetry variations or shipping
lane requirements. The flow around the turbines may
however be constrained by placing turbines adjacent to
one another to form a turbine fence partially spanning
the width of the tidal channel. By reducing the inter-
turbine spacing within a fence of turbines, it has been
demonstrated that the turbines operate at increased
efficiencies for even for small global blockage ratios
[7]. This phenomenon is referred to as the constructive
interference effect.

Fences consisting of multiple turbines placed side-
by-side can therefore make use of this constructive
interference, or local blockage effect, to raise the energy
extraction efficiency of the fence above that of the
Lanchester-Betz limit, even for the case where the fence
makes up a negligible proportion of the channel width.
The flow problem may thus be described in terms of
two scales: a local scale consisting the flow around
an individual turbine and its wake, and a global scale
consisting of all turbines and the flux through the tidal
channel. For this two-scale problem of a long array of
turbines partially spanning the width of a much wider
channel (vanishing global blockage) the efficiency of
energy extraction, normalised on the undisturbed ki-
netic energy flux, rises from the Lanchester-Betz limit
of 0.593 to the partial fence limit of 0.798 [7]. Experi-
ments on pairs of side-by-side turbines at large labo-
ratory scale [8] have confirmed the important aspects
of the underlying partial fence theory and that some
of the performance benefits offered by constructive
interference effects can be achieved in practice.

Experimental validation of constructive interference
performance benefits in laboratory facilities are how-
ever prone to global blockage effects not seen in full-
scale open channel flows due to the close proximity
of flow boundaries to the body. These global blockage
effects modify the thrust and power performance of
the turbines, such that corrections to experimental
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curves are necessary to either translate laboratory-
scale experimental results to full-scale conditions, or
to calculate the expected loads and power on tidal
turbines deployed in blocked-flow conditions [9], [10].
The difficulty with applying blockage corrections to
turbine arrays is the non-linear interaction between
local and global blockage. These two effects cannot
be simply decoupled as for various turbine tip-to-
tip spacings (affecting local blockage), changes in the
global blockage have a different impact on turbine
performance.

A number of blockage corrections have been de-
veloped for single turbines operating in blocked flow
conditions. These corrections are all based on Glauert’s
method [11], and typically seek to describe an equiva-
lent free-stream velocity which, in the absence of global
blockage, would result in the same thrust and velocity
through the turbine as in the blocked case. Thrust
and power curves are then scaled non-linearly with
the ratio of the experimental tank velocity and the
equivalent free-stream velocity. For channel flow, the
most widely used correction is a method developed
by Barnsley and Wellicome [12], and introduced to the
marine energy community in [13]. Various other single-
turbine corrections have been proposed [14]–[17]; see
[9] for detailed numerical and [10] for detailed ex-
perimental comparisons of these blockage corrections.
These single-scale blockage corrections can however
only account for global blockage, and simplifications
for turbine arrays must currently be made based on
the assumption that global and local blockage effects
can be linearly decoupled [8].

This work therefore presents an analytical block-
age correction for co-planar arrays of tidal turbines
based on two-scale momentum theory developed for
partial turbine fences [7]. The correction allows for
a decoupling of the global blockage and constructive
interference effects, such that the local blockage effect
can be isolated and quantified. This correction is com-
pared the Barnsley & Wellicome [12] correction for a
single turbine to demonstrate the necessity of the two-
scale blockage correction. Finally, Reynolds-Averaged-
Navier-Stokes (RANS) computations of turbine arrays
across various local and global blockage ratios are
corrected using the analytical model, demonstrating its
validity.

II. THEORETICAL MODEL

A. Two-scale partial fence model

We start with the two-scale partial turbine fence
theoretical model presented by Nishino & Willden
[7]. A rectangular channel with uniform height h and
width w, contains a large number n of turbine rotors
with a diameter of d which are spaced with equal
spacing s in a spanwise fence configuration as shown
in Fig. 1. The flow through the channel is assumed to be
incompressible and inviscid, and the flow far upstream
of the array UC is assumed uniform and fixed. The
analysis of the flow problem assumes a separation
of scales between the flow around each device and
around the entire array, such that all device-scale flow
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(b) Channel cross-section at the fence plane

Fig. 1. A schematic of of a tidal channel with a co-planar fence of
turbines. For a given channel height h and turbine diameter d, the
spacing s between each turbine defines the local blockage, and for a
fixed number n of turbines, the width of the channel w, defines the
global blockage. At the global array scale, the channel flow velocity
UC is reduced by the presence of the array to UA at the fence, and
recovers to UC far downstream of the fence after wake-mixing. At
the local device scale, the array velocity UA is reduced to UD at the
discs before again recovering to UA after local-scale wake mixing.
The channel is typically significantly wider than the turbine fence.

events, including the local wake-mixing, takes place
much faster than the streamtube expansion of the flow
around the entire array. This allows the flow system
to be solved as a combination of two coupled quasi-
inviscid problems of different scales, namely the array
scale and device (local) scale, see Fig. 1.

Blockage ratios for these two scales are defined. The
first is an array scale blockage, which represents the
array constrained by the sea-bed and sea-surface. This
array scale blockage, or the ratio of representative array
area to channel cross sectional area is

BA =
hn(d+ s)

hw
=

1 + s/d

w/(nd)
. (1)

We define the streamwise velocity at the fence UA, and
assume it to be uniform across the array. The second
geometric ratio is the local (device) scale blockage,
where the turbines are constrained by adjacent devices.
This local scale blockage, or ratio of single turbine area
to local passage cross-sectional area is

BL =
πd2/4

h(d+ s)
=

π

4(h/d)(1 + s/d)
. (2)

The streamwise velocity through the turbines is de-
noted UD, and is likewise assumed to be uniform
across the device area. The global blockage BG =
BLBA is then the ratio of total device area to channel
cross-sectional area.

These blockage ratios define the geometry of the flow
problem. The turbine operating condition is defined in
terms of the thrust coefficients at each scale. The local
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thrust coefficient defines the disc thrust in terms of the
local inlet velocity

CTL =
TD

1
2ρU

2
AAD

, (3)

where TD is the turbine thrust and AD the turbine
area. The array thrust (nTD) is normalised on the array
area and channel inlet velocity for the array thrust
coefficient

CTA =
U2
A

U2
C

BLCTL = (1− αA)
2BLCTL, (4)

where (1 − αA) is the array scale velocity induction
factor. Finally, the global thrust coefficient is the total
thrust (equal to the array thrust), normalised on the
channel inlet velocity and total device area (nAD)

CTG = (1− αA)
2CTL. (5)

Alongside the array scale velocity induction factor,
we additionally define the local scale induction factor
αL = 1 − UD/UA and global induction factor αG =
1− UD/UC , where (1− αG) = (1− αL)(1− αA).

For a given geometry (blockage ratio) and turbine
operating condition (thrust coefficient), we are inter-
ested in the power extraction TDUD, which similar to
the thrust coefficients can be parameterised by the local
CPL = CTL(1−αL), array CPA = CPLBL(1−αA)

3 and
global CPG = CPL(1− αA)

3 power coefficients.
Conservation of mass, momentum and energy can

then be solved for both local and array scales to obtain
thrust coefficients in terms of velocity induction factors
(see [7] for details)

CTL = (1− γL)
(1 + γL)− 2BL(1− αL)

(1−BL(1− αL)/γL)2
, (6)

CTA = (1− γA)
(1 + γA)− 2BA(1− αA)

(1−BA(1− αA)/γA)2
, (7)

where γ is the wake velocity induction factor and is
related to the disc velocity induction factors by

1− αL =
1 + γL

(1 +BL) +
√
(1−BL)2 +BL(1− 1/γL)2

,

(8)

1− αA =
1 + γA

(1 +BA) +
√
(1−BA)2 +BA(1− 1/γA)2

.

(9)

The two scales are then coupled by (4) & (7), as the
array thrust from both expressions must be equal.

B. Two scale blockage correction model

Blockage correction methods seek to find a relation-
ship between the upstream velocity in a blocked flow
and the equivalent upstream velocity in free-flow for
which the turbine would be operating at the same
conditions, i.e. the same mass flux and turbine thrust
through the rotor plane. We use a prime ’ to denote the
free-flow unblocked case, where we are therefore look-
ing for the equivalent channel free-stream velocity U ′

C

to generate the same thrust and disc velocity through
the turbines as in the original blocked case.

Setting the disc velocity and thrust to be equivalent
between unblocked and blocked flow cases

UD = UC(1− αG) = U ′
D = U ′

C(1− α′
G), (10)

TD =
1

2
ρU2

AADCTL = T ′
D =

1

2
ρU2

AADU ′2
AC ′

TL. (11)

Noting that UA = UC(1 − αA) and that (1 − αG) =
(1−αA)(1−αL) the condition on the thrust reduces to

CTL

(1− αL)2
=

C ′
TL

(1− α′
L)

2
(12)

f(γL) = f(γ′
L), (13)

where if we assume that f is an injective function (see
equations 6 & 8), which must be true for the physical
equations to have unique solutions, γL = γ′

L. It then
follows that αL = α′

L and that CTL = C ′
TL. This

result can be intuited from the fact that the function f
excludes the array scale blockage BA, which is the vari-
able that changes between the unblocked and blocked
flow equations (BL remains the same). These identities
can additionally be readily verified numerically.

Now consider the unblocked free-flow case, for
which B′

A = B′
G = 0. Equations for the array scale

variables (9), (4) and (7) reduce to

(1− α′
A) =

1 + γ′
A

2
(14)

C ′
TA = (1− α′

A)
2BLC

′
TL (15)

C ′
TA = (1− γ′

A)(1 + γ′
A). (16)

By writing γ′
A in terms of α′

A (14), setting CTL = C ′
TL

(12) and equating (15) & (16), these expressions allow
for a relationship between the free-flow array scale
axial induction factor and the blocked flow conditions

4α′
A(1− α′

A) = (1− α′
A)

2BLCTL (17)

(1− α′
A) =

4

4 +BLCTL
(18)

Finally, we seek a relationship between the blocked and
free-flow upstream channel flow velocities which, by
assuming the disc velocity is the same between the two
cases as in (10), can be shown to be related to the array
scale induction factors by

UC

U ′
C

=
(1− α′

G)

(1− αG)
, (19)

UC

U ′
C

=
(1− α′

L)(1− α′
A)

(1− αL)(1− αA)
, (20)

UC

U ′
C

=
(1− α′

A)

(1− αA)
. (21)

Combining (18) and (21), the correction factor reduces
to

UC

U ′
C

=
4

4(1− αA) +BLCTL(1− αA)
(22)

or alternatively

UC

U ′
C

=
(1− αA)

(1− αA)2 +BLCTL(1− αA)2/4
, (23)

UC

U ′
C

=
4(1− αA)

4(1− αA)2 + CTA
. (24)
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This form of the correction factor is comparable to the
Barnsley & Wellicome [12] correction, except extended
from a single disc to a turbine fence partially spanning
a channel by applying two-scale momentum theory.
Note that the array thrust coefficient CTA is a function
of the local blockage ratio BL, coupling the two scales
in (24).

Equation (24) can now be used to correct for the tip-
speed ratio (TSR), thrust and power coefficients:

TSR′ = TSR
(
UC

U ′
C

)
, (25)

C ′
T = CT

(
UC

U ′
C

)2

, (26)

C ′
P = CP

(
UC

U ′
C

)3

. (27)

For a given recorded tip-speed ratio, thrust and power
coefficient in a blocked flow (for example in a labora-
tory scale towing tank experiment), (24) can be used to
find UC/U

′
C and (25)-(27) can then used to correct to

the device operating in free-flow conditions. We note
that the same formulation can be applied to consider
corrections to a non-zero global blockage ratio, say for
instance to estimate the performance of an array in a
large tidal channel which has been tested in a towing
tank, i.e., where BA > 0.

C. Numerical solutions to the two-scale blockage correction
We now outline a numerical scheme which can be

followed to implement the proposed blockage correc-
tion. The inputs are the array scale blockage BA and the
local blockage BL, which can be found from (1)-(2) and
depend on the channel geometry and turbine layout.
Assuming turbine power PD, thrust TD and the free-
stream velocity UC are measured, both CTG and CPG

are known.
By the array thrust coupling outlined in section II-A

CTG =

(
1− γA
BL

)(
(1 + γA)− 2BA(1− αA)

(1−BA(1− αA)/γA)2

)
, (28)

where we have used (5) and where αA is given by
(9). This can be solved iteratively by a root-finding
algorithm for γA, which can then be substituted back
into (9) for (1−αA). The local thrust coefficient is then
CTL = CTG/(1 − αA)

2, from which (6) can again be
used with a root-finding method to find both γL and
(1 − αL). Finally, (4) can be used to find CTA. This
process is illustrated diagrammatically in Figure 2 for
reference.

These solutions can be substituted into (24) for the
velocity correction factor, and (25)-(27) for the blockage
correction factors. This procedure can then be looped
over a number of inputs for the blockage corrected
curves, for instance a range of turbine spacing or range
of turbine thrust.

III. NUMERICAL METHOD

We validate the proposed blockage correction on 3-D
Reynolds-Averaged-Navier-Stokes simulations of tur-
bine fences in channels of varying widths and realistic
turbine tip-to-tip spacings.

UC

U ′
C

(28)

(9)

(5)

(6)

(8)

(4) (24)

CTG BA BL

γA

αA CTL CTA

αL
γL

(9)

Fig. 2. Flowchart outlining the process to solve for the blockage
correction, with the relevant equations which need to be solved
shown. Loops imply that the respective equations need to be solved
iteratively.

A. Numerical setup
Fig. 1 shows an example of the cross-section of the

simulated channel. The Cartesian coordinates (x, y, z)
represent the streamwise, vertical and spanwise direc-
tions. The domain boundaries are located at −50d ≤
x ≤ 50d, 0 ≤ y ≤ (h/d)/2, 0 ≤ z ≤ (w/(nd))/2, with
the streamwise boundaries set far enough from x = 0
such that the boundary location does not influence
the results. Uniform streamwise flow is assumed at
the inlet, and zero streamwise flow gradients at the
outlet. We simulate a quarter of the entire domain by
setting a symmetry condition at the z = 0 and y = 0
boundaries, with the remaining boundaries set to a
free-slip condition.

We consider a fence of n = 8 discs of diameter d,
located at the centre of the channel at x = 0. We fix
the height of the channel h/d = 2, and vary the local
and global blockage through the disc spacing s/d and
channel width w/(nd) respectively.

An O-grid mesh with a minimum of 30 grid points
across the diameter of each disc is used to model each
disc in y−z plane of the channel, with additional mesh
refinement at the disc boundary. The discs thickness is
taken to be 0.02d, with axial grid refinement to ensure
a minimum of 10 grid points across the disc thickness.
The disc thickness and grid density are selected such
that further decreases/refinement do not influence the
results by over 0.5%.

The RANS equations are then solved in OpenFOAM
with the Reynolds stress terms modelled using the k−ϵ
viscosity model [18]. We assume an inlet turbulence
intensity of I = 0.1%, with the inlet turbulent kinetic
energy then k = 1.5(IUC)

2 and inlet kinetic energy dis-
sipation rate ϵ = C0.75

µ k1.5/L, where we take Cµ = 0.09
and the reference length scale as L = 0.1d. Changes
to the inlet turbulence conditions do not affect the
results as long as the inlet turbulence intensity remains
relatively small. Finally, the kinematic viscosity is set
to ν = 10−6 m2/s, which needs to be arbitrarily small
enough such that the inertial forces dominate the vis-
cous forces.

As demonstrated by Nishino & Willden [19], the
performance of the disc fence is limited by the mixing
rate, which can be controlled by variations in the tur-
bulence model coefficient Cϵ,1. Following [19], we set
Cϵ,1 = 1.36 to promote stronger mixing relative to the
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TABLE I
SUMMARY OF THE NUMERICAL SIMULATION CONDITIONS

Number of discs n 8

Disc thickness 0.02d

Disc resistance K(U2
D/2)

Turbulence model k − ϵ [18]
I 0.1%

k 1.5(I · UC)2 m2/s2

Cµ 0.09
Cϵ,1 1.36
L 0.1d

ν 10−6 m2/s

nominal standard case, which itself does not represent
anything physically standard in terms of wake mixing
of actuator discs. Similar results would however be
observed under different choices (including the regular
choice) of Cϵ,1 [19].

Disc resistance is modelled by a change in the mo-
mentum flux equal to SU = K(U2

D/2), where UD

is the local streamwise velocity, and is added to the
momentum equation by distribution over the cell vol-
umes at the location of the discs. The disc momentum
loss factor K is assumed to be uniform across the
surface of all discs. We neglect rotational effects, which
we assume are decoupled from the blockage effect,
and can therefore be considered separately. The global
axial induction factor can then be defined as ⟨αG⟩ =
1 − ⟨UD⟩/UC , and the resultant disc averaged global
thrust and power coefficients can then be determined
by ⟨CTG⟩ = K⟨U2

D⟩/U2
C and ⟨CPG⟩ = K⟨U3

D⟩/U3
C ,

where the angle brackets represent volume averaging
over all discs in the fence. The numerical simulation
conditions are summarised in table I, and simulations
are performed over a range of K such that the peak
power point is always located.

B. Numerical validation
We validate our formulation against the n = 8,

s/d = 0.25, w/(nd) = 10 simulations presented by
Nishino & Willden [19], shown in Fig. 3. Three ana-
lytical curves are shown, representing the Garrett &
Cummins [3] model assuming local or global blockage
for B as the lower and upper bounds respectively, and
the Nishino & Willden [7] two-scale model which uses
both. Across all local and global blockage ratios, the
fence performance curves rest between the upper and
lower bounds of the Garrett & Cummins [3] model,
with the Nishino & Willden [7] model an excellent fit
for the actual performance. The numerical formulation
presented herein clearly matches the theoretical curve
and previous numerical simulation results, giving fur-
ther confidence in both the grid quality and finite
volume formulation for the momentum sink.

C. Numerical results
We present results for the channel and turbine con-

figurations in Table. II and Table. III, representing 16
simulations of varying turbine and channel configura-
tions.

(a) Fence averaged power coefficient

(b) Fence averaged thrust coefficient

Fig. 3. A validation study comparing numerically simulated fence
averaged performance coefficients plotted against the fence aver-
aged axial induction factor against both theoretical and published
numerical results. Triangles show the results for the s/d = 0.25,
w/(nd) = 10, n = 8 case, with the circles showing results for
the same case in [19]. The dashed and dash-dot curves represent
the Garrett & Cummins [3] single-scale model assuming that the
blockage is global or local respectively. The solid curve represents
the two-scale turbine fence model [7].

TABLE II
THE RANGE OF TIP-TO-TIP DISC SPACING CONSIDERED FOR
NUMERICAL SIMULATIONS TO VALIDATE THE THEORETICAL

BLOCKAGE CORRECTION. FOR ALL SIMULATIONS THE CHANNEL
HEIGHT h/d = 2 AND NUMBER OF DISCS n = 8.

s/d BL

0.1 0.357
0.25 0.314
0.5 0.262
1.0 0.196

TABLE III
THE RANGE OF CHANNEL WIDTHS CONSIDERED FOR NUMERICAL

SIMULATIONS TO VALIDATE THE THEORETICAL BLOCKAGE
CORRECTION. FOR ALL SIMULATIONS THE CHANNEL HEIGHT

h/d = 2 AND NUMBER OF DISCS n = 8.

w/(nd) BG

2 0.196
4 0.098
10 0.039
40 0.010
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(a) Fence averaged power coefficient

(b) Fence averaged thrust coefficient

Fig. 4. Example solutions to the numerical model, here shown
for the two cases representing the largest (with circles, s/d = 0.1,
w/(nd) = 2) and smallest (with triangles, s/d = 1, w/(nd) = 40)
combination of local and global blockage. Fence averaged perfor-
mance coefficients are plotted against the momentum loss factor K.
For all simulations we assume a fixed disc number n = 8 discs
and fixed channel height h/d = 2. The two insets show streamwise
velocity contours at peak power, taken at an axial channel-cross
section at the plane of the turbines for the two configurations.

Two example simulation results representing the
lowest (s/d = 1, w/(nd) = 40) and highest (s/d = 0.1,
w/(nd) = 2) blockage cases are shown in Fig. 4, with
streamwise velocity contours at peak power, taken
at an axial channel-cross section at the plane of the
turbines for both configurations. The entire channel
width is not shown, but is patently significantly smaller
for the channel with larger global blockage. For all
channels, the averaged thrust coefficient monotonically
increases with the momentum loss factor K, and the
averaged power coefficient sees a distinct maximum
for 2 ≤ K ≤ 8, where we note that K = 2 is the
optimal momentum loss factor for a single disc in an
unbounded flow. An increase in the global blockage
always increases the peak power coefficient for a given
number of discs and turbine spacing. Note that the
power coefficient can, as in Fig. 4, exceed CPG = 1, as
additional energy can be extracted from the pressure
drop along the channel length. For a given global
blockage, however, there exists an optimal turbine
spacing, or local blockage, to maximise the power
coefficient. As the peak power coefficient increases for
a given configuration, the required thrust to realise this
peak power also increases.

Fig. 5 first demonstrates the need for a two-scale

Fig. 5. A comparison of the presented blockage correction model
against a widely used single-scale blockage correction model pre-
sented by Barnsley & Wellicome [12], here shown for an example
case of s/d = 0.25, w/(nd) = 10. The solid black circles show the
numerical results, with the triangles the corrected curve applying
our model. The red triangles and circles show the corrected curves
applying the single-scale model assuming that the blockage ratio is
local and global respectively, demonstrating the necessity for a two-
scale correction.

blockage correction by an example correction of the
s/d = 0.25, w/(nd) = 10 case by comparing the
widely used Barnsley & Wellicome [12] single-turbine
correction to the proposed two-scale correction. Unlike
the thrust and power curves in Fig. 3 for which the
two-scale model is bounded by the single-scale model
assuming B = BG and B = BL for upper and lower
bounds respectively, the single-scale blockage correc-
tion gives inconsistent results for the turbine fence, due
to the large differences in operating conditions between
a turbine fence and single tidal turbine.

D. Two-scale blockage corrected simulations

We now consider correcting the blocked flow sim-
ulations by applying the proposed theoretical block-
age correction to the thrust and power curves for
the various channel configurations. Fig. 6 presents the
results of all numerical simulations of the channel
and turbine configurations presented in Table. II and
Table. III, alongside the free-flow blockage corrected
curves found by applying the theoretical formulation
presented herein. Each subfigure represents a fixed
turbine configuration, represented by a fixed tip-to-tip
turbine spacing or local blockage. The range of tip-to-
tip distances represent realistic turbine fence spacings.
The channel width is then varied by over an order
of magnitude, representing the range from laboratory
scale flow testing to a near unblocked, or a near
infinitely wide, channel.

The proposed blockage correction applied to the
numerically simulated cases always corrects the per-
formance curves to values slightly below the simulated
lowest blockage case (BG = 0.01), confirming the
validity of the theoretical model. Additionally, with
the blockage correction applied to all cases (including
the BG = 0.01 cases), the correction predicts consistent
free-flow performance (for each given turbine spacing)
with small error margins for the fixed turbine arrange-
ments.

In general, slightly larger errors in the correction
predictions occur for large thrust coefficients, well
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(a) s/d = 0.1, BL = 0.357

(b) s/d = 0.25, BL = 0.314

(c) s/d = 0.5, BL = 0.262

(d) s/d = 1.0, BL = 0.196

Fig. 6. Two-scale blockage corrections to the numerical results for the
range of local and global blockage ratios presented in Table. II & Ta-
ble. III. Solid symbols represent simulation results, connected with a
line between points for convenience. Hollow symbols represent two-
scale blockage corrected results. The channel widths of w/(nd) = 2,
w/(nd) = 4, w/(nd) = 10, w/(nd) = 40 are represented by
squares, diamonds, triangles and circles respectively. For a set tip-to-
tip turbine spacing, the corrected curves closely follow one another
just below the nearly unblocked simulation case, demonstrating the
validity of the proposed correction.

above the peak power point, and for the smallest
turbine spacing (i.e. largest local blockage BL = 0.196).
These increased errors stem from the limitations of the
proposed model. The two-scale theory from which the
blockage correction is derived assumes that the device-
scale wake mixing takes place much faster than the
array-scale flow expansion i.e. that the two-scales are
completely separated. This is however only valid when
the number of turbines in the fence is sufficiently large.
Nishino & Willden [19] developed a model to account
for short fences and found that the solutions asymptote
to the two-scale theory as the number of turbines in the
fence increases. When accounting for finite number of
turbine fences, deviation from the two-scale theory de-
pends on the operating conditions, channel and turbine
layouts, as well as the numerical mixing assumptions.
Correcting the various configurations, particularly at
larger disc loadings where the finite fence effect is ex-
pected to be of larger significance, is therefore expected
to lead to the slightly increased errors observed. Sec-
ondly, the validity of the proposed blockage correction
is limited in the case of BL ≈ BG, or where BA ≈ 1. For
example in the limit for BA = 1, it can be shown from
the theory in section II-B that the model is only valid
for BLCTG ≤ 1/3, and therefore breaks down at larger
BL and CTG. This impacts the largest turbine spacing
combined with smallest channel width cases for which
the correction can no longer be applied. These cases
are however typically outside of the area of interest as
widely spaced turbines are unlikely to be placed in a
co-planar fence configuration in a very narrow channel.
In these cases however, existing single-scale blockage
corrections are recommended instead.

Nonetheless, the proposed two-scale blockage cor-
rection clearly corrects the performance of blocked
turbine arrays to free-flow conditions with excellent
accuracy across a wide range of disc spacing (local
blockage), channel width (global blockage), and oper-
ating conditions.

IV. CONCLUSIONS

This study proposes a new two-scale blockage cor-
rection method for an array of turbines operating in a
channel. It extends a two-scale theoretical model [7]
for the performance of a row of co-planar turbines
partially spanning the width of a tidal channel by de-
veloping a relationship between free-flow (unblocked)
and blocked flow conditions.

The model is validated by RANS-AD simulations
with an array of n = 8 turbines across a range of
realistic turbine tip-to-tip spacings (local blockage) and
channel width (global blockage). The proposed cor-
rection shows excellent agreement with the numerical
results across a wide range of realistic local and global
blockage ratios.

A limitation of the proposed correction is that it
relies on the assumption of complete separation be-
tween local and array scales, which is only true for
a large number of discs in the fence. The correction
can therefore be extended on by following the same
formulation but with short-fence theory [19] instead to
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account for low turbine number fence configurations.
An additional extension to the two-scale correction can
be to consider the effects of free-surface deformation
[4], here assumed negligible.

A particularly useful aspect of the theoretical model
is to allow for experimental quantification of the local
blockage effect for turbine fences which partially span
the width of a tidal channel. While constructive inter-
ference effects which exploit the local blockage ratio
may be present in both full-scale deployments and
reproduced in experiments, the constraints imposed
by the dimensions of experimental facilities will likely
introduce array, and therefore global, blockage effects
as well that would not otherwise be observed at full
scale. For instance, doubling the fence length doubles
the global blockage, but increases in fence thrust and
power cannot be attributed only to the change in
global blockage due to non-linear coupling between
local and global blockage effects. This correction allows
for a decoupling of these two effects, such that the
local blockage effect can be isolated and quantified.
The blockage corrected results can then for example
be combined with models of fence performance in
channels with an oscillatory tidal current [20] for a
complete understanding of in-situ performance.
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