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The Impact of Wave Prediction Uncertainty on
the Control of a Multi-Axis Wave Energy

Converter
Carrie Hall, Yueqi Wu, Igor Rizaev, Wanan Sheng, Robert Dorrell and George Aggidis

Abstract—As global energy demands and climate con-
cerns continue to grow, the need for renewable energy
is becoming increasingly clear and wave energy converter
(WEC) systems are receiving growing interest. WECs often
utilize optimal control techniques for power take-off op-
eration and leverage a prediction of the upcoming wave
force to ensure power production optimization. Prior work
has clearly demonstrated that high power production can
be achieved when an exact system model is used and the
upcoming wave conditions are known, but uncertainty in
the underlying model or the wave prediction can degrade
performance. The uncertainty in these predictions and the
model could degrade the WEC’s power output. This work
examines the impact of uncertainty on the control of a
WEC system that leverages machine learning to predict
wave forces over the upcoming time horizon. This paper
quantifies wave prediction uncertainty and its seasonal
variation and illustrates that this uncertainty may only
minimally degrade power output on complex multi-axis
WECs due to the strong influence of constraints in the
system.

Index Terms—wave energy converter, machine learning,
wave prediction, model predictive control

I. INTRODUCTION

IN order to meet rising energy needs in a sustainable
manner, significant growth in renewable electricity

production is essential. Solar and wind energy are two
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commonly considered renewable energy sources, but
when solar energy is converted to wave energy at
the water surface, the energy intensity increases [1].
This unique feature means that ocean waves could
provide an excellent future energy source. While wave
energy converters (WECs) have been researched since
the 1970s, these systems have not yet reached maturity.
In such devices, the maximum energy will be cap-
tured if the frequency of the WEC system matches the
dominant frequency of the incoming wave. The power
take-off (PTO) system can be used to effectively adjust
the device frequency. A wide range of PTO systems
exist including turbines, hydraulic systems, and linear
actuators [2], but in this work a hydraulic PTO is
integrated given the cost-effectiveness of this option.

Many strategies for controlling the PTO system have
been investigated over the years in an effort maximize
energy production. Early strategies often manipulated
the PTO system by leveraging linear models and
velocity tracking, complex conjugated or impedance
matching control. Studies by Hals [3] and later Garcia-
Violini [4] compared a variety of these techniques.
While these methods have merits, they often encounter
challenges with operation over a wide frequency range
and can become computational intensive. Those with
feedforward components also needed wave excitation
estimates and as such, could be more prone to perfor-
mance problems due to wave prediction errors [4].

WEC control typically aims to maximize energy
production, and as such, many strategies have relied
on optimal control methods. A wide variety of opti-
mal control strategies have been explored including
model predictive control (MPC) [5], [6], spectral and
pseudo spectral methods [7], [8], flatness-based [9] and
moment-based approaches [10], [11]. Many optimiza-
tion schemes leverage a model of some type to select
the PTO action that optimizes energy production over
a future horizon. This approach is logical but has two
primary challenges: 1) the need for an accurate WEC
model and 2) the need for an estimate of future wave
forces.

The need for accurate models is difficult since WECs
are complex hydrodynamic systems with nonlinear dy-
namics but will not be addressed directly in this work.
Instead, this paper focuses on uncertainty coming from
the predictions of the incoming waves. Methods of
wave prediction include models based on stochastic
time series based on the previous time steps [12], [13],
Gaussian process models [14] or autoregressive models
[15]. Fewer studies have considered the uncertainty
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of the incoming waves in the control methodology.
Lao and Scruggs included variability of wave depth
assuming it was a stationary stochastic process with a
known power spectral density [16]. Stochastic effects
on the future wave excitation force were considered
by Fusco and it was shown that the affect of errors
could be attenuated with adjustments to the closed
loop transfer function [13]. In other words, if the nature
of the uncertainty is known in advance, it can be
accommodated. Stochastic control strategies have also
been explored to deal with the uncertain nature of the
incoming waves [17]–[20].

In recent years, the prevalence of machine learning
has enabled another option for predicting incoming
wave features. Neural networks can be trained to pro-
vide real-time predictions of waves, but they carry with
them an uncertainty given the black-box nature of the
prediction. Comparisons to physics-based models such
as the Simulating WAves Nearshore (SWAN) wave
model have shown that machine learning can produce
accurate results with less computational burden [21].
Multi-layer ANNs have been successfully used along
with an MPC scheme leading to significant improve-
ments in performance particularly in conditions with
irregular waves [22], [23].

Based on these prior efforts, this study examines
wave predictions for a specific location off the coast
of Ireland and Scotland and investigates the impact
that these predictions have on control of a constrained
WEC system. The TALOS WEC considered in this work
has a unique design that should enable higher energy
extraction from incoming waves but this design also
has some additional constraints to the motion that may
in turn limit the controller’s ability to optimize en-
ergy production. This paper seeks to 1) quantify wave
prediction uncertainty and its variation over different
locations and seasons, and 2) examine the impact that
this real-life uncertainty has on WEC energy output
operating with constraints.

II. WAVE DATA AND MEASURED WAVE VARIATION

In order to examine the impact of wave predictions,
wave characteristics were gathered for a location at
a longitude of 8.5152◦W and latitude of 55.8919◦N
(Figure 1). Characteristics were based on an analysis-
forecast numerical wave model (product NORTH-
WESTSHELF ANALYSIS FORECAST WAV 004 014)
from the Copernicus Marine Environment Monitoring
Service (CMEMS).

The variation in key wave characteristics at this
location were examined including significant wave
height, energy wave period, zero-crossing mean wave
period, peak period and mean wave direction. Data
was available on an hourly basis. This hourly data
was used to create higher resolution simulated data
sets that represented the same significant wave height
and peak period observed over the course of that hour.
This allowed the control action to be examined with
data that better reflects actual conditions as will be
discussed in more detail later. Significant wave height
and peak period are focused on here as they directly

impact the external wave force on the WEC and as
such, will directly impact the control performance to
be explored in the next section.

Fig. 1. Test site for wave data off the coasts of Ireland and Scotland

Figures 2 and 3 illustrate the variation observed
in significant wave height and peak period observed
over each month. Average significant wave height is
highest from October to March and daily variability
is also most significant during these time periods. The
summer months have lower wave heights and more
steady significant wave heights throughout the course
of the day. Peak periods range from 6 to 21 seconds
with some days seeing drastic shifts over that range in
the course of a day in the winter months. Variations in
peak periods are still observed in the summer but the
peak periods are shorter with a maximum around 16
seconds.

Fig. 2. Variation in significant wave height in 2021

The seasonal and daily variability may be important
to consider when using machine learning for wave
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Fig. 3. Variation in peak period in 2021

predictions. Networks that are trained on data from a
particular month or time of day only may not capture
other times of the year or day well. A preliminary
study on this effect will be presented in the next section
but further work that leverages more data and higher
resolution data would be valuable.

The measured wave statistics were recorded on an
hourly basis and data for the 2021 year were used in
this study. While hourly characteristics are useful for
studies of the wave climate, control methodologies are
implemented with a much smaller sampling time. In
order to create a representative data set with the res-
olution needed for control development, these hourly
wave characteristics were used to create a wave time
series with a 0.05 second resolution that represent an
irregular wave with the measured statistical significant
wave height and peak period metrics. The wave time
series was generated using Inverse Fourier transform
from an assumed wave spectrum (Bretschneider) with
the wave significant height, and peak period. As such
the measurements along with the numerical model
provide a prediction of the anticipated wave forces
with respect to time at a resolution useful for control
development. This data set was used for machine
learning based predictions and the evaluation of the
impact on control effectiveness.

III. MACHINE LEARNING FOR WAVE PREDICTIONS

Wave predictions were created using a long short-
term memory (LSTM) network that was trained on
simulation data for the external wave force and re-
sulting TALOS position, PTO force and power output.
The LSTM predictions of the external wave force were
based on current observations on-board TALOS. The
LSTM had 100 hidden layers and was trained on 80%
of the data with the remaining 20% used for validation.

The LSTM was initially trained using 1 hour of 10Hz
data for the time from midnight to 1am on January 1,
2021. During this hour, the wave height was 2.968 m
and the peak period was 8.60 seconds. As illustrated
in Figure 4, the LSTM is able to accurately predict

the external wave force based on the on-board TALOS
measurements. The errors for the prediction are shown
in Figure 5 with most errors being relatively small and
maximum errors being around 220kN.

In order to test the capabilities of the network, the
network trained on the January 1st data set was used to
predict the external wave forces for the 12pm-1pm on
July 1, 2021. Wave conditions at that time have a much
lower significant wave height of 0.882 m but a similar
peak period (8.03 seconds). The resulting wave forces
are also 28% the strength of those observed in January.
As illustrated in Figures 6 and 7, the predictions are
still reasonable but the avearage errors are larger. The
largest errors occur at the peaks of the wave force.

While much more investigation could be conducted
on the influence of training variables and the seasonal
and temporal variation and their impacts on the wave
predictions, these results indicate that an LSTM net-
work is able to accurately predict the waves provided
sufficient data is available. As such, the predictions
are leveraged here to examine the influence of their
uncertainty on the control performance.
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Fig. 4. Actual and predicted wave force for validation data set for
Hour 1 of January 1, 2021.
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Fig. 5. Prediction error for validation data set for Hour 1 of January
1, 2021.

IV. CONTROL STRUCTURE AND CONTROL MODEL

The control evaluation was aimed at moving toward
a multi-axis system. While most systems operate on a
single axis, several multi-axis WECs have been devel-
oped such as Pelamis [24] and TALOS [25]. The design
here is based on TALOS, which is a point-absorber type
WEC with a central heavy mass that is attached to a
hull with springs and hydraulic cylinders that form
part of the PTO system as illustrated in Figure 8. When
the hull is moved by the waves, the relative motion
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Fig. 6. Actual and predicted wave force for Hour 12 of July 1, 2021
based on the January 1, 2021 trained network.
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Fig. 7. Prediction Error for Hour 12 of July 1, 2021 Based on the
January 1, 2021 Trained Network.

between the central mass and hull drives hydraulic
fluid through the PTO system resulting in electricity
production. In this work, motions in the vertical or
heave direction are considered and the two degree
of freedom TALOS system with its moving internal
mass and external hull is investigated. Future work
will examine the full range of motion of the system.

Fig. 8. TALOS WEC configuration.

Prior work has shown that an MPC structure using
position and velocity feedback is effective for this
system [26]. A linear MPC structure was effective as
long as the controller had knowledge of both the PTO
dynamics and hydrodynamics. In prior work, it was
assumed that the future wave forces were known for
an upcoming time horizon. In this work, the impact
of the uncertainty of the wave force predictions is
quantified. An MPC was integrated using the model
structure shown in Figure 9. The MPC uses a linear

model that includes both the hydrodynamics of the
WEC and the underlying dynamics of the hydraulic
PTO system. A nonlinear MPC could be leveraged but
prior work by the authors has shown that nonlinear
MPC is computationally expensive for this problem
and tends to create drastic actuator commands that
could cause excessive wear or damage to the system
[26]. The MPC predicts the torque that the PTO should
output. This desired torque command is passed on the
underlying PTO system. The PTO and hydrodynamics
plant models are nonlinear.

Fig. 9. Full state MPC structure.

To capture the structure of the TALOS device, a two
degree of freedom WEC model was created as shown
in Figure 10 in which there is a main central mass (ball)
and a hull. In the TALOS device, as the mass moves
up and down inside the hull, it will pump hydraulic
fluid through a circuit driving a generator. The PTO
is used to vary the force on the hydraulic piston.
For this study, only motion in the vertical or heave
direction is considered. The underlying controller aims
to maximize the generator power output.

Fig. 10. Two degree of freedom point absorber WEC system with
hydraulic PTO

While a summary of the model is provided here,
a more thorough discussion is provided in [26]. The
hydrodynamics of the point absorber are modeled
using standard wave-structure interaction equations
including forces due to radiation, buoyancy, drag, and
friction as well as the restoring force of the spring,
wave excitation force and the force generated by the
PTO. Additional forces such as the mooring force may
be present but are excluded here.

With the TALOS structure, the hull is impacted by
the external wave motion and hydrodynamics while
the central ball motion is driven by the hydraulic piston
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and spring that connect it to the hull. With these forces
considered, the motion of the central ball is

Mballẍball = −frest − fpto (1)

where Mball is the mass of the ball, xball is the position
of the central mass, frest is the restoring force from
the connecting spring and fpto is the force from the
hydraulic PTO system.

The restoring spring force is given by

frest = Srest(xball − xhull) (2)

and is impacted by the relative displacement between
the ball and the hull (xhull). The motion of the hull is
captured as

(Mhull +m∞,hull)ẍhull = −frad − fbuoy − fdrag − ffric

+frest + fext + fpto
(3)

in which Mhull is the mass of the hull, m∞,hull is the
added mass, frad is the radiation force, fbuoy is the
buoyancy force, fdrag is the drag force, and ffric is
the friction force. The term fext represents the external
wave force which will leverage the LSTM prediction.
The hull leverages the model form used in [27].

The radiation force (frad) is expressed as a linear
state space model with

frad = Crq (4)

and
q̇ = Arq + Brẋ. (5)

This model has been shown to accurately capture
radiation forces [27], [28].

The buoyancy, drag and friction forces are given by
Eqs. 7 and 8, respectively.

fbuoy = πgRb
2

(
1− |x|x

3Rb
2

)
x (6)

fdrag = 0.5ρAwCd|ẋ− vf |(ẋ− vf ) (7)

ffrict = Fnµdtanh(αẋ) + µvẋ

+Fn(µs − µd)e
−(|ẋ|/vs)

2

tanh(αẋ)
(8)

In these equations, Rb is the buoy radius, Aw is the
submerged surface area of the buoy, Cd is the viscous
drag coefficient, and vf is the water surface velocity
in the x direction. The friction model includes Fn rep-
resenting the normal force, vs as the Stribeck velocity
and µd, µv , and µs representing the damping, viscous
and static friction coefficients, respectively.

The system uses a hydraulic PTO system with a
model based on the state space model developed by
Bacelli et al. [29]. As illustrated in Figure 10, the system
has four check valves that rectify the flow as well
as a gas accumulator to smooth the flow. The fluid
flow drives a hydraulic generator producing power
output. The PTO model includes the losses associated
with the pressure drops in the pipes, motor leakage
and friction. The full model derivation is detailed in
[29] and results in two nonlinear differential equations

that summarize the PTO dynamics. The first equation
captures dynamics of the accumulator volume (V) by

V̇ = −kl · Pa(V )− D

J
· L+ S · ˙(xball − xhull) (9)

where kl is a motor leakage coefficient, Pa(V ) is the
accumulator pressure posed as a function of V , D is
the motor constant, J is the inertia momentum of the
hydraulic motor shaft, L is the hydraulic motor shaft
angular momentum, and S is the piston cross-sectional
area.

The dynamics of the generator shaft angular momen-
tum are expressed in the second differential equation
for the PTO as

L̇ = D · ηm · Pa(V )− B

J
· L− TG (10)

in which ηm is the motor efficiency, B is the motor
friction and TG is the generator torque output.

The PTO force is a function of the accumulator
volume and piston velocity as given by

fPTO = S · Pa(V ) + S · k(S · ẋ)

=
Ks·(Lg+Leq)·ρ·S·ẋ

2Re·Dh·Ap
2 |S · ẋ|.

(11)

KS , Lg , Leq and Dh are the pipe cross-section shape
factor, geometric pipe length, equivalent length of
local resistance and hydraulic diameter of the pipe,
respectively. The term ρ represents the density of the
hydraulic fluid and Ap is the pipe cross-sectional area.

Combining these equations together, a ten state
model was developed with the states [xball ẋball q1 q2
q3 q4 V L xhull ẋhull] and the form:

ẋ1 = x2

ẋ2 = 1
Mball

(−Srs(x1 − x9)− fPTO)

ẋ3 = Ar1 · x3 +Ar2 · x4 +Ar3 · x5 +Ar4 · x6 + x10

ẋ4 = x3

ẋ5 = x4

ẋ6 = x5

ẋ7 = −klh(x7)− D
J x8 + S(x2 − x10)

ẋ8 = Dηmh(x7)− B
J x8 − TG

ẋ9 = x10

˙x10 = 1
Mhull+m∞,hull

(−Cr1 · x3 − Cr2 · x4 − Cr3 · x5

−Cr4 · x6 + Srest · (x1 − x9)

−πgRb
2
(
1− |x9|x9

3Rb
2

)
x9

−0.5ρAwCd|x10 − vf |(x10 − vf )
−Fnµdtanh(αx10)− µvx10

−Fn(µs − µd)e
−(|x10|/vs)

2

tanh(αx10)
+fext + fPTO)

(12)
This model was used by the MPC along with the
external wave force predictions generated by the LSTM
network to examine the control effectiveness. Con-
straints were integrated to ensure that the ball does not
hit the hull and that the torque commands are within
a feasible range.

V. RESULTS

Using the control structure depicted in Figure ??,
a linear MPC was tested for two scenarios. First, the
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control effectiveness was examined for January 1st and
the performance with the actual wave force data as
an input and compared to the scenario when the pre-
dicted data was leveraged. Next, the performance was
studied for July 1st. In this second case, the controller
effectiveness was compared when leveraging the actual
wave force data and when using a prediction based on
the LSTM trained on the January 1st data. As seen in
Figure 6, the wave force prediction is still quite good
but has larger errors at the higher wave forces.

The January cases are able to produce approximately
the same power output (with a difference of 0.0015%)
when the MPC uses the actual wave force data or the
prediction based on the LSTM. Given the relatively
small difference between the data and prediction, this
minimal difference in performance was expected. De-
spite similar power production, there are underlying
differences in the mass and hull positions, velocities
and PTO forces. As seen in Figure 11, the central mass
has a similar position when the MPC uses the actual
data compared to the prediction. However, when the
actual data is used, this leads to the central mass
having slightly larger motions. This is likely due to the
fact that the LSTM slightly underpredicts the external
wave force. In other words, the LSTM tends to predict
a lower wave force that the actual leading to a smaller
motion of the central mass.

Fig. 11. Position of central mass for January 1, 2021 case with MPC
using actual data and predictions.

Fig. 12. Velocity of central mass for January 1, 2021 case with MPC
using actual data and predictions.

The slightly smaller motions of the central mass
also lead to lower velocities although the differences
are minor as illustrated in Figure 12. This figure also
illustrates the fact that the MPC is tending to optimize
the power output by periodically limiting the motion of
the mass. Velocities alternate between staying between

-1 to 1 m/s and going into a mode with more extreme
motion from -4 to 4 m/s. This behavior appears to be
in part due to the controller having difficulty solving
within the system constraints.

The constraints require a positive distance between
the central mass and hull, but since it is preferable to
keep some additional buffer, a constraint of 0.05m was
imposed. As observed in Figure 13, in both MPC cases,
the controller struggles to find a solution that abides
by this constraint. During times when it is unable to
keep the distance consistently above 0.05m, the control
action calls for smaller PTO forces (Figure 14) that
keep the central mass velocity low. When the MPC is
able to largely maintain the constraint, it has larger
control action resulting in larger velocities and power
outputs. The wave prediction error does not seem to
exaggerate this issue as both MPC options have a
similar challenge.

Fig. 13. Distance between central mass and hull for January 1, 2021
case with MPC using actual data and predictions.

Fig. 14. PTO force for January 1, 2021 case with MPC using actual
data and predictions.

The July cases also have minimal changes in power
output although the difference is more significant than
in the January cases where the MPC is trained on the
data from that time frame. For the July 1st case, a
similar power output is achieved (with a difference of
0.064%) when the MPC uses the actual wave force data
or the prediction based on the LSTM. In the July cases,
the wave prediction has more error, but since it tends to
under-predict the motion this tends to lead to slightly
more conservative control action. The central mass
motion is slightly more limited when the predicted
wave forces are used by the MPC as seen in Figure
15. As illustrated in Figures 16 and 17, the velocities
and distances maintained between the central mass
and hull are also slightly lower when the MPC uses the
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predicted wave forces rather than the actual values. As
in the January cases, the July cases also exhibit a fluc-
tuating behavior with the controller being conservative
at times due to challenges with the constraints. During
these points where constraint violation is high, the PTO
force again exhibits low values (Figure 18. PTO action
is higher and power output is higher at points when
larger distances between the central mass and hull are
able to be maintained.

Fig. 15. Position of central mass for July 1, 2021 case with MPC
using actual data and predictions.

Fig. 16. Velocity of central mass for July 1, 2021 case with MPC using
actual data and predictions.

Fig. 17. Distance between central mass and hull for July 1, 2021 case
with MPC using actual data and predictions.

Despite significant differences in wave force between
January and July, both cases produce similar power
output. This is because the wave forces in January are
large enough that the WEC appears to not be able to
fully take advantage of them due to the underlying
constraints between the central mass and the hull.
In both cases slight differences in power output are
observed when the predictions are used instead of
the actual data, but these differences are quite min-
imal. As illustrated in Figure 19, the energy output

Fig. 18. PTO force for July 1, 2021 case with MPC using actual data
and predictions.

is quite similar when the MPC uses either the actual
or predicted wave force data and despite the larger
incoming wave forces in January, one hour in both
January and July produce similar energy outputs. As
such, constraints appear to be a bigger limiting factor
on the WEC power output and the uncertainty of the
incoming wave produces only a minor effect.

Fig. 19. Energy output using actual data and predictions.

These results indicate that an LSTM trained on a
relatively small amount of data may be able to provide
accurate predictions for future cases. However, the
current analysis is limited since high resolution data
had to be recreated due to the unavailability of raw
data at a high resolution. In this work, hourly exper-
imental statistical metrics were used to recreate the
10Hz data using an assumed random behavior within
a wave spectrum to create the irregular wave character-
istics.The data used for the prediction is created via the
same algorithm in both cases and as such reduces the
variability from that likely observed in the real case.
As observed in Figures 2 and 3, the hourly statistics
of wave characteristics can change dramatically over
the course of a day and from season to season. Fu-
ture work should examine the impact of seasonal and
temporal variation using experimentally obtained data.
In addition, factors including LSTM hyperparameter
tuning and the MPC prediction horizon will influence
the results and their influence should be explored.

VI. CONCLUSIONS

This study illustrated that an LSTM network can cap-
ture external wave forces and slight inaccuracies in the
predictions do not significantly degrade performance
for the two degree of freedom WEC system examined
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in this work. With a more complex WEC design like
that of TALOS, constraints are a challenge and this
study illustrates that those constraints can significantly
limit the controller’s ability to optimize performance.
Future work will focus on including additional degrees
of freedom to the motion and incorporating higher
resolution experimental data as it becomes available.
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