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Abstract— We present a novel mathematical model to 

investigate the extraction of wave power by flexible elastic 

floaters. The model is based on the method of dry modes, 

coupled with a matched eigenfunction expansion. Our 

model results compare satisfactorily with preliminary data 

obtained from a demonstrator device, developed at the 

University of Groningen. We show that the role of 

elasticity is to increase the number of resonant frequencies 

with respect to a rigid body, which has a positive effect on 

wave power output. The mathematical model is then 

extended to irregular incident waves, described by a 

JONSWAP spectrum. Our results show that the peak 

capture factors decrease in irregular waves, as compared to 

the monochromatic case. However, the system becomes 

more efficient at non-resonant frequencies. This work 

highlights the need to scale-up experimental investigations 

on flexible wave energy converters, which are still a small 

minority, compared to those on rigid converters. 

 

Keywords— floating elastic plate, fluid-structure 

interaction, wave energy. 

I. INTRODUCTION 

n this paper we present a novel mathematical model 

of wave energy extraction by means of flexible floaters. 

We started an investigation into innovative wave 
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energy converters (WECs), with the goal of decreasing 

the levelized cost of energy (LCOE) of wave power 

generation. Indeed, the sheer size and complexity of 

many of the WEC devices proposed and tested during the 

past couple of decades has so far hindered their 

scalability and commercialisation [1]. To overcome such 

challenges, we consider the possibility of using light and 

flexible materials, instead of bulky components, in the 

design of the prime mover. To this aim, Renzi [2] 

analysed the coupled hydro-electromechanical response 

of a bimorph plate made by a flexible substrate 

intertwined with piezoceramic layers. Renzi [2] shows 

that the piezoelectric plate can extract sufficient energy 

for low-power devices, like sensors, LEDs, computers and 

wireless routers. Later, Buriani and Renzi [3] also showed 

that connecting the flexible piezoelectric device to a 

vertical wall significantly enhances its performance in 

small-amplitude waves. The idea of using flexible floaters 

to extract energy from the ocean has been recently 

pushed forward by Zheng et al. [4], who investigated the 

hydrodynamic interaction between water waves and an 

array of circular porous elastic plates. An important result 

shown in [4] is that wave power dissipation by the array 

of elastic plates increases thanks to the constructive 

interaction between the plates, which suggests an 

interesting potential for wave power generation. 

Further investigations on floating elastic plates include 

the effects of three-dimensional structures on wave 

energy dissipation [5–7], and the interactions between a 

flexible plate and a bottom ridge [8]. The potential use of 

arrays of floaters to extract energy from waves has 

attracted the attention of the wave energy industry as 

well. For example, the Dutch company Ocean Grazer has 

recently proposed several versions of its “floater blanket” 

concept, an array of floater elements each connected to 

power take-off (PTO) systems [9]. For details on the 

technology, see [10]. 

The mathematical model proposed in this paper 

investigates a two-dimensional flexible plate floating on 

the surface of the ocean, and connected to a series of 

linear PTO devices. By coupling the method of dry modes 

with a matched eigenfunction expansion, we show that 

the energy extraction efficiency of the device is enhanced 

by the bending elastic modes of the plate.  

We also show novel results of a demonstrator model of 

flexible wave energy device made by silicone sheets. The 
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tests were carried out in the Faculty of Science and 

Engineering, University of Groningen (The Netherlands).  

Finally, the mathematical model is extended to 

investigate the device performance in random seas. We 

show that the peak performance decreases in irregular  

 

 

 

 
Fig. 1.  Side view of the floating plate WEC. The power take-off 

(PTO) mechanisms are located at points xi, i = 1, ..., M. 

 

waves, as compared to the monochromatic case. 

However, the system becomes more efficient at non-

resonant frequencies. We anticipate that these results will 

be of interest to wave energy companies working on the 

development of flexible WECs. 

This work has been developed in the framework of a 

linear theory, while the device performance has been 

investigated by analysing the effects of a simplified 

symmetric PTO distribution, the bottom ridge height and 

the stiffness of the plate. Extensions to higher order 

theories, as well as the analysis of the plate shape effects 

on the wave field and the contribution given by complex 

PTO distributions are research area worth of 

investigation.  

II. MATHEMATICAL MODEL 

With reference to Fig. 1, consider an infinite two-

dimensional channel of constant depth h and a 

rectangular ridge of width 2L and height c. Let us define a 

Cartesian reference system (x,z) with the x axis along the 

undisturbed free surface and the z axis positive upward. 

At x = ∈ [−𝐿, 𝐿] , z = 0 rests a flexible floater WEC of 

length 2L and thickness hp, allowed to oscillate under the 

action of incident waves. The WEC is connected to the 

ridge through a number M of vertical power take-off 

(PTO) mechanisms, each with damping coefficient υ = 

υPTO and located at x = xi, i = 1, ..., M. We assume L>>hp, 

thus the elastic vibration of the floater can be described 

by the Euler beam equation. We assume also 

monochromatic incident waves of amplitude A coming 

from x → ∞, inviscid fluid and irrotational flow. Hence, 

the velocity potential Φ(x, z, t) satisfies Laplace’s equation 

in the fluid domain Ω(x, z). On the free surface, we have 

the linearised mixed boundary condition 

  𝛷𝑡𝑡 + 𝑔𝛷𝑧 = 0,   𝑧 = 0,   𝑥 ≥ |𝐿|,    (1) 

where g is the acceleration due to gravity and t is time. 

The subscripts denote differentiation with respect to the 

relevant variable. We require tangential fluid velocity at 

the bottom and on the ridge vertical walls, located at x 

=±L, i.e. Φ𝑛 = 0 where n denotes the normal derivative to 

the relevant surface. The kinematic boundary conditions 

on the wetted surface of the plate are 

 Φ𝑧 =  W𝑡 ,   𝑧 = −𝑑,   𝑥 ∈ [−𝐿, +𝐿], (2) 

 

 Φ𝑥 =  −(𝑧 − 𝑧𝑔)W𝑥𝑡 , 𝑧 = −𝑑, 𝑥 ∈ [−𝐿, +𝐿], (3) 

where W is the vertical displacement response of the 

structure and zg is the coordinate of the structure’s centre 

of mass. Since the system is forced by monochromatic 

incident waves of frequency w, we assume harmonic 

motion 

 {Φ, W, ζ} = 𝑅𝑒{(𝜙, 𝜂, 𝑤)𝑒−𝑖𝜔𝑡}, (4) 

with i being the imaginary unit. Following Newman 

[12,13], we now decompose the displacement of the 

floater into a set of dry modes, i.e., in the absence of fluid 

or added mass. This approach allows us to separate the 

solutions of the hydrodynamical and structural problem, 

to significantly reduce the numerical computations and to 

obtain a deeper physical insight.  We point out that the 

dry modes of an elastic beam consist of a combination of 

rigid and bending elastic modes. In the next Section we 

will show that the effect of the elastic modes is to increase 

significantly power extraction efficiency. 

Since the plate and the fluid domain are symmetric 

with respect to the vertical axis x = 0, we decompose the 

modal expansion into symmetric and antisymmetric 

parts, hence 

 𝑤 = ∑[ζ𝑙
𝑆𝑓𝑙

𝑆 + ζ𝑙
𝐴𝑓𝑙

𝐴],

∞

𝑙=0

 (5) 

where the superscripts S and A denote, respectively, 

the symmetric and antisymmetric components, while ζ𝑙
𝑆,𝐴 

represents the complex amplitude of the symmetric or 

antisymmetric l-th mode. The plate satisfies the Euler 

beam equation with free-free end conditions; therefore, 

the corresponding dry modal shapes are 𝑓0
𝑆 = 1, 𝑓0

𝐴 = 𝑥, 

 𝑓𝑙
𝑆 =

cosh ( 𝜇𝑙
𝑆 𝑥/𝐿)

cosh 𝜇𝑙
𝑆 +

cos ( 𝜇𝑙
𝑆 𝑥/𝐿)

cos 𝜇𝑙
𝑆 , (6) 

 

 𝑓𝑙
𝐴 =

sinh ( 𝜇𝑙
𝐴 𝑥/𝐿)

sinh 𝜇𝑙
𝐴 +

sin ( 𝜇𝑙
𝐴 𝑥/𝐿)

sin 𝜇𝑙
𝐴 , (7) 
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where 𝑓0
𝑆 and 𝑓0

𝐴correspond to the rigid modes heave 

and pitch, respectively, while the eigenvalues 𝜇𝑙
𝑆,𝐴 are the 

positive real roots of the following eigenvalue conditions 

 tanh 𝜇𝑙
𝑆,𝐴 ± tan 𝜇𝑙

𝑆,𝐴 = 0. (8) 

The decomposition into symmetric and antisymmetric 

parts allows us to analyse the half-problem in the region x 

> 0 and simplify significantly the mathematical structure. 

We also decompose the velocity potential into diffraction 

and radiation components, i.e,  

 𝜙 = 𝜙𝐷
𝑆 + 𝜙𝐷

𝐴 + ∑[ζ𝑙
𝑆𝜙𝑙𝑅

𝑆 + ζ𝑙
𝐴𝜙𝑙𝑅

𝐴 ],

∞

𝑙=0

 (9) 

 

 𝜙𝐷
𝑆,𝐴 =

𝜙𝐼

2
+ 𝜙𝑆

𝑆,𝐴, (10) 

where the subscript S denotes the scattering potential, 

D the diffraction potential and R the radiation potential. 

The incident wave potential is given by 

 𝜙𝐼 =
−𝑖𝐴𝑔 cosh 𝑘0(ℎ + 𝑧)𝑒−𝑖𝑘0𝑥

𝜔 cosh 𝑘0ℎ
, (11) 

where the wavenumber k0 is the real root of the 

dispersion relation 𝜔2 = 𝑔𝑘0 𝑡𝑎𝑛ℎ 𝑘0 ℎ.  

A. Diffraction Potential Solution 

The general solution in Ω(1,2) is given by 

 𝜙𝐷
𝑆,𝐴(1)

=
𝜙𝐼

2
+ ∑ 𝐶𝑗

𝑆,𝐴(1)
𝑋𝑗

(1)
𝑍𝑗

(1)
,

∞

𝑗=0

 (12) 

 𝜙𝐷
𝑆,𝐴(2)

= ∑ 𝐶𝑗
𝑆,𝐴(2)

𝑋𝑗
(2)

𝑍𝑗
(2)

,

∞

𝑗=0

 (13) 

 

where the 𝐶𝑗
𝑆,𝐴(1,2)

 are unknown complex constants,  

 𝑍𝑗
(1)

= cosh 𝑘𝑗(ℎ + 𝑧), 𝑋𝑗
(1)

= 𝑒𝑖𝑘𝑗𝑥, (14) 

 

 𝑍𝑗
(2)

= {

1, 𝑗 = 0

𝑐𝑜𝑠
𝑗𝜋(𝑑 + 𝑧)

𝑐 + 𝑑 − ℎ
, 𝑗 > 0   

, (15) 

 

𝑋𝑗
𝑆(2)

= {

1, 𝑗 = 0

𝑐𝑜𝑠ℎ
𝑗𝜋𝑥

𝑐 + 𝑑 − ℎ
, 𝑗 > 0  

, (16) 

 

𝑋𝑗
𝐴(2)

= {

𝑥, 𝑗 = 0

𝑠𝑖𝑛ℎ
𝑗𝜋𝑥

𝑐 + 𝑑 − ℎ
, 𝑗 > 0

   , 

 

(17) 

while the terms kj’s are the roots of the dispersion 

relation 

 {
𝜔2 = 𝑔𝑘0 tanh 𝑘0 ℎ

𝜔2 = −𝑔𝑘𝑗̅ tan 𝑘𝑗̅ ℎ, 𝑘𝑗 = 𝑖𝑘𝑗̅ 𝑗 > 0
  . (18) 

Usage of 𝜙(1) = 𝜙(2) and 𝜙𝑥
(1)

= 𝜙𝑥
(2)

 in x = L gives two 

equations in the unknowns 𝐶𝑗
𝑆,𝐴(1,2)

. Multiplying 

continuity of velocity and continuity of pressure by 

𝑍𝑗
(1)

 and 𝑍𝑗
(2)

, respectively, and integrating over the 

relevant intervals, 𝑧 ∈ [−ℎ, 0] and 𝑧 ∈ [−ℎ + 𝑐, −𝑑], yields 

a non-homogeneous linear system in the unknown 

coefficients 𝐶𝑗
𝑆,𝐴(1,2)

. The resulting systems are solved by 

truncating and numerically solving an N x N system of 

equations. The singularity at the bottom edges of the 

WEC is weaker than that of objects characterised by sharp 

corners, thus the numerical convergence is fast [16-18]. 

Numerical computations can be checked through 

theoretical integral relations, such as the Haskind–

Hanaoka formula. 

B.  Radiation Potential Solution 

The general solution in Ω(1) is given by 

 𝜙𝑙𝑅
𝑆,𝐴(1)

= ∑ 𝐷𝑙𝑗
𝑆,𝐴(1)

𝑋𝑗
(1)

𝑍𝑗
(1)

,

∞

𝑗=0

 (19) 

where the 𝐷𝑗
𝑆,𝐴(1)

 are unknown complex constants. The 

solution in Ω(2) is given by the homogeneous part and a 

particular solution that accounts for the plate vibration in 

z = -d. 

𝜙𝑙𝑅
𝑆,𝐴(2)

= ∑ 𝐷𝑙𝑗
𝑆,𝐴(2)

𝑋𝑗
(2)

𝑍𝑗
(2)

∞

𝑗=0

+ 𝜙̃𝑙𝑅
𝑆,𝐴, (20) 

where the 𝐷𝑗
𝑆,𝐴(2)

 are again unknown complex 

constants, the particular solution for the rigid heave 

mode reads  

𝜙̃0𝑅
𝑆 =

−𝑖𝜔 [𝑧2 − 𝑥2 + 2𝑧(ℎ − 𝑐)]

2(ℎ − 𝑐 − 𝑑)
, (21) 

while the particular solution for the pitching mode is 

given by  
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𝜙̃0𝑅
𝐴 =

𝑖𝜔𝑥 [𝑥2 − 3𝑧2 − 6𝑧(ℎ − 𝑐)]

6(ℎ − 𝑐 − 𝑑)
. (22) 

For the symmetric and antisymmetric l-th bending 

mode, the particular solutions are  

𝜙̃𝑙𝑅
𝑆 = −

𝑖𝜔𝐿 

𝜇𝑙
𝑠 [

𝑐𝑜𝑠
𝜇𝑙

𝑠𝑥
𝐿

𝑐𝑜𝑠ℎ
𝜇𝑙

𝑠(𝑧 + ℎ − 𝑐)
𝐿

𝑐𝑜𝑠𝜇𝑙
𝑠𝑠𝑖𝑛ℎ

𝜇𝑙
𝑠(ℎ − 𝑐 − 𝑑)

𝐿

−
𝑐𝑜𝑠ℎ

𝜇𝑙
𝑠𝑥
𝐿

𝑐𝑜𝑠
𝜇𝑙

𝑠(𝑧 + ℎ − 𝑐)
𝐿

𝑐𝑜𝑠ℎ𝜇𝑙
𝑠𝑠𝑖𝑛

𝜇𝑙
𝑠(ℎ − 𝑐 − 𝑑)

𝐿

], 

(23) 

 

𝜙̃𝑙𝑅
𝐴 = −

𝑖𝜔𝐿 

𝜇𝑙
𝐴 [

𝑠𝑖𝑛
𝜇𝑙

𝐴𝑥
𝐿

𝑐𝑜𝑠ℎ
𝜇𝑙

𝐴(𝑧 + ℎ − 𝑐)
𝐿

𝑠𝑖𝑛𝜇𝑙
𝐴𝑠𝑖𝑛ℎ

𝜇𝑙
𝐴(ℎ − 𝑐 − 𝑑)

𝐿

−
𝑠𝑖𝑛ℎ

𝜇𝑙
𝐴𝑥
𝐿

𝑐𝑜𝑠
𝜇𝑙

𝐴(𝑧 + ℎ − 𝑐)
𝐿

𝑠𝑖𝑛ℎ𝜇𝑙
𝐴𝑠𝑖𝑛

𝜇𝑙
𝐴(ℎ − 𝑐 − 𝑑)

𝐿

]. 

(24) 

As in the case of the diffraction potential, by 

multiplying 𝜙𝑥
(1)

= 𝜙𝑥
(2)

 by 𝑍𝑗
(1)

 and 𝜙(1) = 𝜙(2) by 𝑍𝑗
(2)

, 

and integrating over the relevant intervals, yields an 

inhomogeneous linear system in 𝐷𝑗
𝑆,𝐴(1,2)

. As in the 

previous section, the resulting linear system is solved 

numerically. 

C. Structural Response and the Haskind–Hanaoka Formula 

The vibration of the floating elastic plate is governed 

by the following Euler dynamic equation  

−𝐸𝐼𝑊𝑥𝑥𝑥𝑥 − 𝜌𝜙𝑡 − ∑ 𝛿(𝑥 − 𝑥𝑚)𝜈𝑃𝑇𝑂𝑊𝑡 − 𝜌𝑔𝑊

𝑀

𝑚=1

− 𝜌𝑝ℎ𝑝𝑊𝑡𝑡 = 0, 

(25) 

where E is the elastic modulus of the plate, I is the area 

moment of inertia of the plate and 𝛿 denotes the Dirac 

delta function. The first term in the equation above 

represents the flexural rigidity, the second term is the 

dynamic pressure exerted by the diffracted and radiated 

wave fields, the third term represents the effect of 

localised forces due to the PTO system, the fourth term is 

the hydrostatic contribution, while the last term 

represents the inertia of the plate. By expanding W 

through the dry mode decomposition and recalling that 

for a free-free beam in the absence of applied loads 

𝑓𝑥𝑥𝑥𝑥 = 𝑓(𝜇/𝐿)4 we obtain 

∑{[𝐾𝑖𝑙
𝑆 − 𝜔2(𝐼𝑖𝑙

𝑆 + 𝑀𝑖𝑙
𝑆) − 𝑖𝜔(𝐶𝑖𝑙

𝑆 − 𝜈𝑃𝑇𝑂𝐷𝑖𝑙
𝑆)]𝜁𝑙

𝑆

∞

𝑙=0

+ [𝐾𝑖𝑙
𝐴 − 𝜔2(𝐼𝑖𝑙

𝐴 + 𝑀𝑖𝑙
𝐴) − 𝑖𝜔(𝐶𝑖𝑙

𝐴

− 𝜈𝑃𝑇𝑂𝐷𝑖𝑙
𝐴)]𝜁𝑙

𝐴} = 𝐹𝑖 , 

(26) 

where Kil, Iil, Mil, Cil and Dil are the generalised stiffness 

matrix, mass matrix, added mass matrix, radiation 

damping matrix and PTO damping matrix, while the 

term at the right-hand side represents the exciting force 

vector. The structure of the latter equation suggests that 

the floating plate behaves as a linear forced harmonic 

oscillator. The natural modes of the WEC are then 

evaluated from the homogeneous unforced and 

undamped system. By equating to zero the determinant 

of the coefficient matrix, it is possible to get the 

eigenfrequencies and the respective modal forms.  

The Haskind–Hanaoka formula valid for two-

dimensional domains can be used to check the numerical 

computations of the diffraction and radiation velocity 

potentials. Usage of Green’s Theorem [15] gives   

𝐹𝑖
𝑆,𝐴 = 2𝜌𝐴𝐶𝑔𝐷𝑖0

𝑆,𝐴(1)
cosh 𝑘0ℎ, (27) 

    in which 𝐷𝑖0
𝑆,𝐴(1)

 is the first complex coefficient of the 

radiation potential, 𝐶𝑔is the group velocity and 𝐹𝑖
𝑆,𝐴 is the 

exciting force.  

D. Wave Power Extraction and Theoretical Maximum 

Efficiency 

Once the complex coefficients 𝜁𝑙
𝑆,𝐴 are determined, the 

average power absorbed over a wave period by the plate 

in monochromatic waves can be calculated as  

𝑃 =
1

𝑇
∫ 𝑑𝑡 𝜈𝑃𝑇𝑂

𝑇

0

∑ 𝑊(𝑥𝑚)𝑡
2

𝑀

𝑚=1

 

=
𝜈𝑃𝑇𝑂𝜔2

2
∑ |∑ 𝜁𝑙

𝑆𝑓𝑙
𝑆(𝑥𝑚) + 𝜁𝑙

𝐴𝑓𝑙
𝐴(𝑥𝑚)

∞

𝑙=0

|

2

.

𝑀

𝑚=1

 

 

(28) 

   Then, we define the capture factor as the ratio between 

the power output P and the incident wave energy flux 

per unit width 𝐶𝐹 = 𝑃/𝐸𝐶𝑔where E is the total energy. We 

now turn to the evaluation of the theoretical maximum 

capture factor. Using the radiated wave amplitudes at 

large distances [15], the most general expression of the 

capture factor for two-dimensional flexible floaters 

becomes  

𝐶𝐹 = −𝑅𝑒 {2 ∑ 𝐴𝑙
−𝜁𝑙

∗

𝑙

+ ∑ ∑ 𝜁𝑙𝜁𝑖
∗(𝐴𝑙

−𝐴𝑖
−∗ + 𝐴𝑙

+𝐴𝑖
+∗)

𝑖𝑙

}, 

       (29) 

where (. )∗ denotes the complex conjugate of (. ), 𝐴𝑙
± is 

the amplitude of the radiated waves at large distance 
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from the plate, for unit modal amplitude, while the 

superscripts A, S denoting symmetric and antisymmetric 

components are omitted for brevity. If there is one degree 

of freedom, the latter gives 𝐶𝐹 = 0.5. This result can be 

derived in a different way directly from the equation of 

motion of a two-dimensional rigid absorber properly 

constrained [15,19]. We remark that the theoretical 

maximum of the capture factor for a two-dimensional 

WEC cannot be larger than 1 because of conservation of 

energy. The plate considered in this work is elastic and 

characterised by two rigid modes (heave and pitch) and 

an infinite set of bending modes, thus 𝐶𝐹  can be 

maximised several times within the range of frequencies 

of interest. For example, let us consider two modes that 

dominate the dynamics with respect to the others, one 

symmetric and the other one antisymmetric. Recalling 

that wave energy extraction is optimised when the total 

scattered and radiated waves are maximised in the 

direction opposite to the incident wave field, we assume 

𝐴𝑙
𝑆− = 𝐴𝑙

𝐴−, 𝐴𝑙
𝑆+ = 𝐴𝑙

𝐴+, i.e., the radiated wave amplitude 

of each mode in the direction opposite to the incident 

waves is the same. The corresponding capture factor 

becomes  

𝐶𝐹 = −2𝑅𝑒 {2 ∑ 𝐴𝑙
𝑆−(𝜁𝑙

𝑆∗ + 𝜁𝑙
𝐴∗)

𝑙

} − 2|𝜁𝑙
𝑆𝐴𝑙

𝑆−|
2

− 2|𝜁𝑙
𝐴𝐴𝑙

𝑆−|
2

. 

(30) 

   The capture factor is maximised when the first term on 

the right-hand side is real and negative and when the 

modal coefficients satisfy the following condition   

|𝜁𝑙
𝑆,𝐴| =

1

2|𝐴𝑙
𝑆−|

. (31) 

The latter gives CF = 1, a value independent of the WEC 

size. This result has been obtained from the simplified 

assumption of WEC motion dominated by two modes, 

while the flexible floater considered in this work includes 

rigid and bending elastic modes as well. This aspect 

potentially implies multiple optimisation and consequent 

larger efficiency with respect to standard rigid devices. 

III. RESULTS AND DISCUSSION 

In this section, we investigate the effects of the plate 

geometry, ridge height c and PTO distribution on the 

hydrodynamic behaviour and efficiency of the system. 

We choose the following parameters: A = 1 m, h = 5 m, ρ = 

1000 kg m-3, EI = 6.9 x 104 kg m3s-2, and L = 10 m. Since in 

the expressions for the velocity potentials and bending 

modes there are infinite terms, the summations must be 

truncated up to a limiting value in the computations. 

Here, we use j = 10 and consider the first 5 dry modes to 

reach good accuracy. Calculations were carried out using 

the MATLAB software.  

A. Effects of the PTO distribution 

Here, we investigate the effects of the PTO coefficient 

𝜈𝑃𝑇𝑂  and PTO distribution on the power extraction 

efficiency. For the sake of brevity, let us assume c = 0 m.  

 
Fig.2.  Behaviour of the Capture Factor versus frequency of the incident waves and PTO-Coefficient. 

(a) PTO at the ends xi = ±L; (b) Equally spaced PTO every 5 m. 
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Fig. 2 shows the surface plot of the capture factor 

versus the incident wave frequency and the PTO 

coefficient for different PTO distributions. Fig. 2a refers to 

the case of two PTO systems located at the ends of the 

plate 𝑥𝑖 = ±𝐿, while Fig. 2b shows the case of 5 PTOs 

equally spaced located at 𝑥𝑖 = ±𝐿, ±
𝐿

2
, 0. When the 

number of the PTOs increases, the bandwidth of the 

capture factor increases and the system becomes more 

efficient. Several peaks with value CF ≈ 1 are shown, 

therefore the theoretical maximum of a two-dimensional 

WEC in a channel can be almost reached. This result 

confirms the theoretical predictions obtained in Section 

2.D. Note also that the maxima are located in 

correspondence to the first eigenfrequencies of the 

system, i.e., ωi = 0.99, 1.55, 2.24, 2.77, 3.66, 5.06 Rad s -1. As 

in the case of oscillating wave surge converters and 

oscillating water columns [17,18,20–24], resonance of 

natural modes is beneficial in terms of power extraction 

efficiency.  

B. Effects of the ridge height  

Now we analyse the effects of the ridge height c on the 

capture factor. Let us fix the PTO distribution to be 

equally spaced every 5 m and consider the same floater 

geometry analysed in the previous section. By comparing 

Fig. 2b (case without ridge) with Fig. 3a,b, we note that 

when the ridge height increases, the overall efficiency of 

the system decreases, while a narrow peak appears 

around ω = 2.2 Rad s-1. This behaviour is mainly due to 

the reflection of the incident waves with increasing c and 

the shifting of the eigenfrequencies towards smaller 

values. In any case, this analysis shows that if a bottom 

structure with a large height c is needed, the floater 

geometry and the PTO distribution can be still optimised 

to maximise CF up to values around one.    

C. Effects of the plate stiffness  

In order to evaluate the effects of the plate stiffness on 

the generated power, a parametric analysis is performed 

for a softened plate characterised by a smaller value of 

the stiffness factor EI = 6.9 x 103 kg m3s-2 and a rigid plate. 

Fig. 4a shows that when the flexural rigidity of the plate 

decreases, the efficiency of the system can increase. This 

is due to the shifting of the bending mode 

eigenfrequencies towards smaller frequencies and the fact 

that these frequencies tend to be much close to each other. 

Differently from the case shown in Fig. 2b, there are now 

four peaks in which the capture factor CF is close to one. 

When the plate is rigid, or characterised by very large 

stiffness, there are no contributions from the bending 

modes and the dynamics is governed by pitching and 

heaving only. Fig. 4b shows that there is one maximum 

 
Fig.3. Behaviour of the Capture Factor versus frequency of the incident waves and PTO-Coefficient. 

(a) Ridge height c = 2 m; (b) c = 4 m. 

 
Fig.4.  Behaviour of the Capture Factor versus frequency of the incident waves and PTO-Coefficient. 

(a) Flexible plate with stiffness factor EI = 6.9 x 103 kg m3s-2; (b) The case of a rigid plate. 
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around ω = 2.2 Rad s-1 with value CF ≈ 0.8. This frequency 

falls within the eigenfrequencies of the heave mode 1.07 

Rad s-1 and pitching mode 1.67 Rad s-1, respectively. The 

overall efficiency is clearly smaller with respect to the 

cases shown so far because we reduced the number of 

eigenfrequencies, the resonances of the natural modes 

and the possible modal optimisations. This highlights the 

beneficial effects of the bending elastic modes on the 

power extraction efficiency.   

IV. COMPARISON WITH PRELIMINARY DEMONSTRATOR DATA 

The flexible floater demonstrator is made by two layers 

of Polymax SILO-CELL silicone sponge sheet, each of 

dimensions 2 m (length) x 0.2 m (width) x 0.01 m 

(thickness), see Fig. 5. The floater is attached to a 

laboratory model (scale 1:35) of the multi-pump, multi-

piston power take off system (MP2PTO) designed by the 

University of Groningen and Ocean Grazer, shown at the 

top of Fig. 5. The MP2PTO system is installed inside a 

wave tank, which is 1.20 m high, 0.77 m wide and 10 m 

long. Two transparent lateral walls are also installed 

inside the wave tank, along the direction of the incident 

waves, restricting the width to 0.2 m. This effectively 

creates a channel inside the tank, and the flexible floater 

is then installed inside this channel. The channel width 

matches the floater width (0.2 m), hence the dynamics 

inside the channel are two-dimensional. The water level 

in the tank is h = 0.9 m. The waves are generated by a flap 

paddle driven by a rotating-arm engine, located at one 

side of the tank. The engine frequency and the length of 

the rotating arm can be set to a maximum of 60 Hz and 

0.25 m, respectively. At the other side of the tank, a plane 

beach induces wave breaking, thus dissipating wave 

energy and reducing reflection. To calibrate the wave 

maker, digital particle image velocimetry (DPIV)  

 
Fig. 5.  The floater blanket, made by a two-layer red silicone sheet, 

inside the wave tank. The absorbing beach is visible at the end of the 

tank. 

 

measurements were taken using a high-definition 

camera. The camera recorded the motion of tracer 

particles (polyamide particles) seeded in the tank, which 

was illuminated by means of a laser sheet. For details on 

the measurement procedure and associated errors, we 

refer the interested reader to Refs. [25,26] and references 

cited therein. The system of pistons and cables was 

calibrated using load cells, as described in Ref. [27]. The 

flexible floater is connected to the MP2PTO system in the 

tank via high-performance polyethylene cables, which are 

in turn connected to pistons. Each piston is located inside 

a 0.057 m wide cylinder. As the floater deforms under the 

action of the incident waves, it transmits its motion to the 

pistons via the cables. In turn, the pistons pump water 

inside the cylinders. The power extracted by each PTO 

element can be approximated by calculating the work 

done by the piston against the force of gravity to lift the 

water column of weight ρgAH, where A is the cross-

sectional area of the cylinder and H is the maximum 

hydraulic head over a cycle. Thus, the extracted power is 

given by 𝑃 = 𝜌𝑔𝐴𝐻2/𝜏 where 𝜏 is the duration of the 

upstroke motion of the piston. 

The floater is a continuous flexible silicone sheet of 2 m 

length, the maximum hydraulic head in each cylinder is 

measured eight times, and the average of such 

measurements is then taken. The wave height is 0.08 m 

and the wave period is 1.62 s.  

Now, we show a preliminary comparison between the 

results of the experimental and mathematical models. We 

remark that the PTO system is modelled as a linear 

damper in the mathematical model, whereas it is 

nonlinear in the experimental model. For the sake of 

comparison, we selected a PTO coefficient for the model 

which generates the same total power output as that in 

the demonstrator device. This allows some quantitative 

comparisons and discussions. Fig. 6 shows the behaviour 

of the power output for each piston, in both the 

mathematical model and the test. The overall behaviour 

is captured well and, in general, the comparison is 

satisfactory. Both models show that the maximum power  

 
Fig. 6.  Extracted power by the single pistons for the mathematical 

and experimental models. Connecting lines are for graphical 

illustration purposes. 

 

output is achieved by those pistons located towards the 

front of the device. Some differences (especially for the 

Piston 2) still remain, and these are likely due to the use 

of a linear PTO in the mathematical model and wave 
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overtopping. We remark that, to date, very few studies 

have investigated the non-linear dynamics of wave-plate 

systems analytically, see for example Refs. [29,30]. 

However, these dealt with the interaction of waves with 

ice sheets. On the contrary, to the best of our knowledge, 

no application of nonlinear theories to wave power 

extraction from flexible plates has been made so far. This 

highlights the need for developing higher-order 

mathematical models to achieve a more accurate 

description of the power extraction dynamics. 

V.  POWER EXTRACTION IN IRREGULAR WAVES 

In this section, we investigate the effect of irregular sea 

waves on the floating plate dynamics and power 

extraction efficiency. Let us assume the following 

JONSWAP spectrum function [31] 

𝑆𝜁 =
𝛼𝐻𝑠

2

𝜔
(

𝜔𝑝

𝜔
)

4

𝑒−1.25(
𝜔𝑝

𝜔
)

4

𝛾
exp [−(

𝜔
𝜔𝑝

−1)
2

/(2𝜎2)]
, (32) 

in which Hs is the significant wave height, 𝜔𝑝 denotes 

the peak frequency and 

𝛼 =
0.0624(1.094 − 0.01915 ln 𝛾)

0.23 + 0.0336𝛾 − 0.185(1.9 + 𝛾)−1
,

𝛾 = 0.33, 

𝜎 = {
0.07: 𝜔 ≤ 𝜔𝑝

0.09: 𝜔 > 𝜔𝑝
. 

(33) 

Since the problem is linear, we obtain the following 

expression for the averaged generated power [32]  

𝑃𝑠̅ = 𝜈𝑃𝑇𝑂 ∑ ∫ 𝑆𝜁  𝑅𝐴𝑂2𝜔 𝑑𝜔,
∞

0

𝑀

𝑚=1

 (34) 

where RAO is the response amplitude operator for the 

plate. Defining Pζ as the total incident wave power per 

unit crest width  

𝑃𝜁 = ∫ 𝜌𝑔𝐶𝑔𝑆𝜁   𝑑𝜔,
∞

0

 (35) 

     the capture factor in irregular seas can then be written 

as 𝐶𝐹𝜁 = 𝑃𝑠̅/𝑃𝜁 . The latter expression gives the capture 

factor for any sea state characterised by significant wave 

HS, peak frequency 𝜔𝑝 and PTO coefficient 𝜈𝑃𝑇𝑂. 

Let us investigate the capture factor in irregular waves 

of the same plates analysed in Section 3.C. Fig. 7 shows 

the behaviour of 𝐶𝐹𝜁  versus peak frequency 𝜔𝑝  and PTO 

coefficient 𝜈𝑃𝑇𝑂 for the softened flexible plate and the 

rigid plate. The softened plate has stiffness factor EI = 6.9 

x 103 kg m3s-2, while the rigid plate has 𝐸𝐼 → ∞. As in the 

case of monochromatic incident waves, the flexible plate 

results in being more efficient than the rigid plate and can 

be optimised for several values of 𝜔𝑝 and 𝜈𝑃𝑇𝑂. Indeed, 

the rigid plate shows a single peak, while the flexible 

plate shows three maxima and a much larger bandwidth. 

In addition, by comparing Fig. 4 and 7, we note that the 

maxima are reduced with respect to the case of 

monochromatic waves, whereas the system can be more 

efficient outside the resonant frequencies. This is mainly 

due to the coupling between the broadband incident 

waves and the eigenfrequencies of the system. Similar 

results were already obtained in the context of oscillating 

wave surge converters and oscillating water columns 

[17,20,22]. 

VI. CONCLUSION 

This paper has presented novel results on analytical 

and demonstrator model of a wave energy converter 

made by a flexible floating plate. The mathematical 

model is based on a linearised potential-flow theory, 

whereby the method of dry modes is combined to 

matched eigenfunction expansions, in order to solve the 

hydrodynamics of the converter. The main results of the 

analytical model are: 

1) The effect of the plate elasticity is to increase the 

number of the resonant frequencies with respect to a 

rigid plate, while wave power extraction and the 

 
Fig.7.  Behaviour of the Capture Factor in irregular sea waves versus peak frequency of the 

incident JONSWAP spectrum and PTO-Coefficient. (a) Softened flexible plate with stiffness factor 

EI = 6.9 x 103 kg m3s-2; (b) The case of a rigid plate. 



MICHELE et al.: POWER EXTRACTION FROM FLOATING ELASTIC PLATES 217 

bandwidth of the capture factor become larger. The 

same result has been obtained both in 

monochromatic and irregular waves. The PTO 

distribution plays a significant role, and it is seen 

that, by increasing the number of PTO devices, 

modal optimisation occurs, and the overall efficiency 

of the system improves. However, this theory 

considers only the simplified assumption of 

symmetric PTO distributions because of the 

decomposition into symmetric and anti-symmetric 

components. Extensions to more complex PTO 

distributions is a research subject worth of 

investigation. 

2) We also investigated the effect of the ridge height 

below the plate. Analytical results showed that if a 

bottom structure is needed, the floater can be 

properly designed to maximise power extraction, 

despite reduced incident wave transmission. This 

aspect has potentially strong implications for the 

design of nearshore structures for coastal protection. 

3) We analysed the plate response to irregular waves 

described by a JONSWAP spectrum. We showed that 

the presence of a broad wave frequency range 

reduces the maximum resonant peaks of the system. 

However, away from resonance, the efficiency can be 

larger than that of the monochromatic case and the 

benefit of irregular waves is significant. 

A preliminary demonstrator model was also realised, 

by connecting a flexible silicone sheet to the multi-piston 

MP2PTO system developed at the Faculty of Science and 

Engineering, University of Groningen. A comparison 

between the mathematical model results and the 

demonstrator data was encouraging. Further experiments 

will need to be undertaken in a larger wave tank, with a 

more sophisticated absorption system, to confirm the 

trend identified in this work. Given the promising 

efficiency levels shown by the mathematical model, our 

results highlight the need to scale-up experimental 

investigations on flexible wave energy converters, which 

are still a small minority, compared to those on rigid 

converters. 
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