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Sensitivity analysis of extreme loads acting on
a point-absorbing wave energy converter

Claes Eskilsson, Johannes Palm, Pär Johannesson
and Guilherme Moura Paredes

Abstract—There are many uncertainties associated with
the estimation of extreme loads acting on a wave energy
converter (WEC). In this study we perform a sensitivity
analysis of extreme loads acting on the Uppsala University
(UU) WEC concept. The UU WEC consists of a bottom-
mounted linear generator that is connected to a surface
buoy with a taut mooring line. The maximum stroke
length of the linear generator is enforced by end-stop
springs. Initially, a Variation Mode and Effect Analysis
(VMEA) was carried out in order to identify the largest
input uncertainties. The system was then modelled in
the time-domain solver WEC-SIM coupled to the dynamic
mooring solver Moody. A sensitivity analysis was made by
generating a surrogate model based on polynomial chaos
expansions, which rapidly evaluates the maximum loads
on the mooring line and the end-stops. The sensitivities
are ranked using the Sobol index method. We investigated
two sea states using equivalent regular waves (ERW) and
irregular wave (IRW) trains. We found that the ERW
approach significantly underestimate the maximum loads.
Interestingly, the ERW predicted wave height and period as
the most important parameters for the maximum mooring
tension, whereas the tension in IRW was most sensitive to
the drag coefficient of the surface buoy. The end-stop loads
were most sensitive to the PTO damping coefficient.

Index Terms—end-stops, extreme waves, generalized
polynomial chaos, mooring dynamics, sensitivity analysis,
variation mode effect analysis, wave energy converter.

I. INTRODUCTION

SURVIVABILITY remains a major challenge of the
wave energy sector. During sea-trials the sector

has experienced repeated failures connected to storms
and harsh seas. Often the failures have occurred in the
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station-keeping sub-system, e.g. the Oceanlinx [1] and
CETO 4 [2] devices. Another relevant example for the
present study is the breaking of the mooring wires
of the Seabased WECs at the farm outside Lysekil,
Sweden, during the Storm Urd around Christmas time
in 2016 [3] (the Storm Urd allegedly gave rise to waves
up to 12 m high, to be compared to the maximum wave
height of 14.12 m ever recorded in the Skagerrak [4]).

As survival design is closely linked to capital expen-
diture (CAPEX) there is an interest in looking into the
uncertainty of the predicted maximum loads; and there
are many uncertainties associated with the estimation
of extreme loads acting on a wave energy converter
(WEC). At a first glance the major uncertainty is of-
ten assumed to arise from the choice of design case,
being closely related to the estimation of the N th-
year contour line. Here there are different approaches.
Popular choices include the ’all sea-states’ approach,
the inverse first-order method and the one-dimensional
design load selection approach. These methods will
yield different results using the same input data, see
e.g. the discussion in [5]. However, the present paper
does not go into detail with regard to estimation of
design cases. We focus on the combined uncertainties
from several input variables, which apart from the
environmental loads include the properties of the sub-
systems of the WEC itself (the surface buoy, the moor-
ing line and the linear generator). In order to assess the
sensitivity of the system and build probability density
functions (PDF), we need to propagate the random
input variables forward through the nonlinear system.

A straightforward approach for this is to run Monte
Carlo (MC) simulations of the entire system. However,
even for models based on linear potential flow MC
simulations quickly become prohibitively expensive.
Thus, we need to build a surrogate model that is cheap
to evaluate. In this paper we will employ surrogate
models based on generalized Polynomial Chaos (gPC)
[8], [9]. We note that there are several other types
of surrogate models available, e.g. Kriging [6] and
artificial neural networks [7]. A main reason of gPC
popularity is due to the non-intrusive approach, i.e. it
works as a wrapper around the deterministic model
and no changes are required within the deterministic
model. The gPC methodology has been used in the
marine sector for estimating wave propagation over
uncertain bathymetry [10]; for uncertainty quantifi-
cation of mooring loads [11], [12]; and for extreme
loads on wave energy converters [13]. Please note
that [13] uses a gPC approach to create a surrogate
model for significant wave height and peak period to
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efficiently evaluate the loads using the ’all sea-states’
approach. The present study aims to also account for
the uncertainties from the WEC system.

Even if the gPC surrogate model is cheap to evaluate,
there is of course a computational cost associated with
constructing the gPC model. This cost grows rapidly
with the number of the input random variables d;
the so-called curse of dimensionality. The cost to con-
struct the gPC model using all possible variables is
thus prohibitive. In order to find the supposedly most
influential variables this study employs a Variation
Mode and Effect Analysis (VMEA) [14], [15]. VMEA
is a probabilistic method that studies the variation
and uncertainty around a nominal design. The VMEA
approach represents a first order, second moment reli-
ability method. “First order” is due to the fact that the
influence of each term is approximated by one single
linear term, and “second moment” is that the proba-
bilistic influence is approximated by second moment
statistics, variances and covariances.

A. Paper contribution
In this paper we present a sensitivity analysis of the

resulting extreme loads acting on the WEC developed
by Uppsala University (UU). The UU WEC is a point-
absorber with a shallow draft surface buoy connected
with a wire to a direct-drive linear generator standing
on the sea-floor (the design is similar to the WEC devel-
oped by Seabased), see Fig. 1 [16]. The most influential
parameters are found by performing an initial VMEA
analysis of the system. The identified parameters are
then treated as random inputs and gPC surrogate
models are created using a non-intrusive collocation
method around the deterministic WEC model made in
the linear potential flow solver WEC-SIM [17] and the
mooring solver Moody [18]. Both the VMEA and gPC
methodologies have been independently applied to
wave energy cases before [13], [19], but to the authors
best knowledge this is the first time they are used
together within the maritime sector.

II. BUILDING SURROGATE MODELS USING
GENERALIZED POLYNOMIAL CHAOS

Let f(x, Z), represent a model where x is the vector
of deterministic input variables and Z : Ω → R is a ran-
dom variable in the sample space of possible outcomes
Ω. Using the property that a continuous function in L2

with bounded variation can be expressed as an infinite
series, gPC provides a polynomial expansion surrogate
model to f(x, Z) [9]:

fgPC(x, Z) ≈
p∑

k=0

f̂k(x)ϕk(Z) , (1)

where the infinite sum has been truncated at the
specified polynomial degree p. Here f̂k(x) are the
polynomial coefficients and {ϕk(Z)}pk=0 is the set of
polynomial basis functions. For optimal convergence of
fgPC(x, Z) to the results of the original model f(x, Z),
the basis functions should be selected based on the
probability distribution of Z according to the Wiener-
Askey scheme [8].

Fig. 1. Outline of the modelled UU WEC system. Please note that
the figure is not according to scale.

For problems with several random input variables,
Z : Ω → Rd denotes the d-dimensional vector of ran-
dom variables and (1) is replaced by a tensor product
of polynomials corresponding to each random variable

fgPC(x,Z) ≈
p∑

|k|=0

f̂k(x)Φk(Z)

=

p∑
|k|=0

f̂k(x)ϕk1(Z1)ϕk2(Z2)...ϕkd
(Zd) , (2)

where k is a multi-index such that k = (k1, k2, ..., kd)
and |k| = k1+k2+...+kd, and ϕki(Zi) is the polynomial
basis function of the variable Zi of degree ki.

A. Stochastic collocation method

To build the gPC surrogate model we use the
stochastic collocation method [9]. This is a non-
intrusive method, so we only need to post-process the
results of simulations using the deterministic model at
pre-selected values z(j) of the uncertain input Z. The
points z(j) where f(x,Z) is to be evaluated depend
on the method chosen to determine the coefficients f̂k.
These points are typically chosen at the corresponding
quadrature points when d < 4, whereas latin hyper
cube (LHC) sampling is used for larger d .

B. Sensitivity analysis from gPC

An important feature of the gPC method is that the
polynomial coefficients f̂k encode information about
the moments of the probability distributions of the
results. Thus, sensitivity analysis is the integral of the
gPC method. In Sobol’s method for sensitivity analysis
[20], a function f(x,Z) with d random variables is
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 1.5 VMEA in product development

The probabilistic basis for the methodology, the Gauss approximation formula given above, may be 
simplified in an initial design stage where standard deviations and sensitivity coefficients are 
difficult to assess. The VMEA method is evolving through three different phases as shown in Figure
3, namely 1) basic VMEA, in the early design stage when little is known about variations, 2) 
enhanced VMEA, further in the design process when the sources of variation can be better 
identified, and 3) probabilistic VMEA, in the later design stage when detailed information is 
available for variations. 

Figure 3: VMEA in different design phases.

 1.5.1 Basic VMEA

The simplest approximation is called the Basic VMEA where standard deviations and sensitivity 
coefficients are replaced by scores, i.e. relative numerical engineering judgements about uncertainty
and sensitivity, respectively. The Basic VMEA can be built up from a cooperative brain storm 
session. It gives a qualitative picture of uncertainty distribution between different sources and be 
used for prioritisation for further studies. 

 1.5.2 Enhanced VMEA

A refinement of the Basic VMEA may be done by quantifying uncertainties by judging their 
standard deviations by means of standard rules and judge sensitivities by fundamental physical 
knowledge. This analysis is called an Enhanced VMEA and can be used for a preliminary 
assessment of a safety factor needed for taking the studied uncertainties into account.
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Fig. 2. VMEA in different design stages. From [19].

decomposed in a series summation of functions of
increasing order in the variables zi:

f(x,Z) = f0 +
∑
i

fi(x, Zi) +
∑
i<j

fij(x, Zi, Zj) + ...

+ f1...d(x, Z1...Zd). (3)

The variance Var[f(x,Z)] of f(x,Z) is obtained by
summing the variance of each term of (3). The variance
of each term in (3) can be obtained from the coefficients
f̂k of the gPC model [21]. The sensitivity index describ-
ing the contribution of each term to the total variance,
Si1,...,id , is obtained by the ratio between the variance
of that term and the total variance:

Si1,...,id =
Var[f(x, Zi1,...,iN )]

Var[f(x,Z)]
(4)

and the total sensitivity index ST
i for variable Zi, de-

scribing the fraction of the variance caused by variable
Zi at all orders of interaction, is [21]

ST
i =

∑
Si1,...,id (5)

III. VARIATION MODE AND EFFECT ANALYSIS

VMEA comes in three flavors associated with dif-
ferent stages of the product development process, see
Fig. 2. The first phase is the basic VMEA where stan-
dard deviations and sensitivity coefficients are replaced
by scores, i.e. relative numerical engineering judge-
ments about uncertainty and sensitivity, respectively.
The basic VMEA is used in the early design stage
when little is known about variations and be built
up from a cooperative brain storm session. It gives a
qualitative picture of uncertainty distribution between
different sources and be used for prioritisation for
further studies.

A refinement of the basic VMEA may be done by
quantifying uncertainties by judging their standard de-
viations by means of standard rules and judge sensitiv-
ities by fundamental physical knowledge. This analysis
is called an Enhanced VMEA and can be used for a
preliminary assessment of a safety factor needed for
taking the studied uncertainties into account.

A further refinement, called the probabilistic VMEA,
is developed by getting more information about the
most critical uncertainty sources. Standard deviations
are obtained by more detailed studies of empirical

Fig. 3. VMEA in the design and improvement cycle. From [19].

results. Sensitivity coefficients are found from nu-
merical sensitivity studies or differentiation of phys-
ical/mathematical models. The result of such an anal-
ysis give an estimate of the resulting total uncertainty
and a corresponding statistical safety factor.

The general procedure for making a VMEA is com-
mon for all development phases. The work process can
be split into four activities “Define-Analyse-Evaluate-
Improve”, as illustrated in Fig. 3, and can be described
by the seven steps listed in Fig. 3.

A. Mathematical principles of VMEA
The method is based on characterising each uncer-

tainty source by a statistical standard deviation and
calculating its sensitivity with respect to the target
variable, such as fatigue life, maximum stress etc. The
VMEA method combines these into the total prediction
uncertainty, denoted τ , which is obtained by the root
sum of squares (RSS) of the uncertainties in (6).

τ =

√√√√ n∑
i=1

τ2i =

√√√√ n∑
i=1

c2iσ
2
i , (6)

where τi is the resulting uncertainty from source i. τi is
calculated as the product of the sensitivity coefficient
ci and the uncertainty σi of source i. The total number
of uncertainty sources is n. Note that VMEA is a so-
called second-moment method since it uses only the
standard deviation to characterise the distribution of
the uncertainty sources.

B. Evaluation of reliability and uncertainties
As mentioned in the introduction, VMEA is a first

order, second moment reliability method that studies
the variation and uncertainty around a nominal design.
Let us denote a response function as

y = f(x1, x2, . . . , xp) , (7)

where y is the response and the xi’s are the input pa-
rameters. The standard deviation, being the square root
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of the variance, is found using the Gauss’ approximation
formula

Var[Y ] = Var[f(X1, X2, . . . , Xp)]

≈
n∑

i=1

c2iVar[xi] + Covariances . (8)

This formula gives the variance of the target function
f as the sum of variance contributions from different
influencing random variables Xi, each described by its
own variance together with its influence by means of
its sensitivity coefficient ci. The sensitivity coefficients
are defined as

ci =
∂y

∂xi
(x1,r, x2,r, . . . , xp,r) (9)

evaluated at a reference point (x1,r, x2,r, . . . , xp,r).
Formally, the sensitivity coefficient ci is the partial
derivative of the target function f with respect to xi,
but it is often best approximated by a difference quo-
tient. Covariances between the influencing variables
also contribute, however they can usually be neglected
or avoided by re-formulating the model.

IV. NUMERICAL MODELLING

A. Hydrodynamic model

The dynamics of the WEC is modelled using the lin-
ear potential flow assumption. In time domain we use
Cummins’ equation [22] to describe the buoy motion:

(M+A∞) Ẍ (t) +

∫ t

−∞
K (t− τ) Ẋ (t) d τ

+CX (t) = fexc (t) + fdrag (t) + fmoor (t) , (10)

with M being the generalized mass matrix of the
floating body, A∞ the added mass matrix at infinite
frequency, K the radiation impulse response function,
C the hydrostatic stiffness matrix, and X, Ẋ, and Ẍ, re-
spectively, the displacement, velocity, and acceleration
vectors. The external forces include the wave excitation
forces, fexc, the quadratic drag forces, fdrag, and the
mooring forces, fmoor. The hydrodynamic coefficients
are computed using the open-source boundary element
method (BEM) code Nemoh [23]. Please note that (10)
is used for the surface buoy, and the interaction with
the bottom-mounted generator and the PTO is through
the mooring force fmoor.

The code used to solve Cummins’ equation, or
the dynamics of the floating structure, is the time-
domain multi-body dynamics model WEC-Sim devel-
oped by NREL and Sandia [17]. WEC-Sim supports
weakly nonlinear simulations by means of the nonlin-
ear Froude-Krylov approach, in which the wave excita-
tion force is estimated using the instantaneous wetted
surface. This feature is applied in the simulations.

B. Mooring
We use here the mooring dynamics solver Moody.

Moody is based on a high-order discontinuous
Galerkin method [18], [24], [25] and the model supports
internal rigid bodies used to model submerged buoys
and clump weights [26]. This feature has been extended
to model the linear generator PTO, see [27]. Moody can
be coupled to external hydrodynamic solvers, and the
coupling to WEC-SIM used in this work was validated
in [28].

C. PTO and end-stops
The dynamics of the direct-driven linear genera-

tor including the end-stops are implemented within
Moody. The translator is simply treated as a single-
degree-of-freedom rigid body subjected to Newton’s
second law of motion. The generator PTO force is

fPTO = −CPTOżt , (11)

where CPTO is the linear damping coefficient of the
PTO and żt is the translator velocity. The upper and
lower end-stops are activated if the translator exceed
the upper or lower stroke lengths. The end-stops are
modelled as a two-stage spring system with the main
spring stiffness denoted (Kes). Please see [27] for details
of the implementation.

V. CASE STUDY

A. The Uppsala University WEC
In this work we consider the wave energy converter

developed at Uppsala University [16], [29]. A cylindri-
cal buoy is moored with a steel wire rope, which is
connected to the translator of a bottom-mounted, ver-
tical linear generator. Fig. 1 schematically describes the
WEC system and the relevant subsystem terminology.
In addition, the translator and its end-stop system are
collectively labelled the Generator.

TABLE I
SYSTEM SPECIFIC SETTINGS OF THE BASELINE UU WEC CASE.

Buoy Mooring line Generator

Mass, mb (kg) 5736 Density, ρc (kg/m3) 5204 Mass, mt (kg) 6240
Pitch inertia, Iyy (kgm2) 6293 Diameter, Dc (m) 0.04 Stroke length, at (m) 1.2
Radius, 0.5Db (m) 1.7 Normal drag coeff., CDn (-) 1 Damping, CPTO (kNs/m) 59
Height, hb (m) 2.12 Tang. drag coeff., CDt (-) 0.1 End stop stiffness, Kes (kN/m) 776
Draft (m) 1.3 Young’s modulus, Ec (GPa) 15.54 End stop length, Les (m) 0.6

Center of gravity, z(g)b (m) -0.25 Material damping, ξc (kNs) 1.715 Translator length, Lt (m) 1.8

Heave/surge drag coefficient, C(b)
D 1.2 Length, Lc (m) 64.90 Center of gravity, z(g)t -67.3,

Mooring point, z(m)
b (m) -1.3 Mooring point, z(m)

t (m) -66.4
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(a) ERW1: T = 8.2 s and H = 9.5 m.
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(b) ERW2: T = 11.7 s and H = 13.3 m.

Fig. 4. Baseline simulations of the equivalent regular wave ERW1 (left) and ERW2 (right) cases.

The geometry and parameter settings used in this
work follow closely the settings of [29] in which ex-
treme loads were investigated using CFD modelling.
The wave data is for Humboldt Bay, California. The
WEC is located in 70 m water depth and the fluid
density is ρw = 1025 kg/m3. The generator hull is
standing on the bottom, placing the center of the 1.8
m long translator at 67.3 m below the water surface in
equilibrium. Table I shows the baseline settings used
to simulate the full-scale WEC system.

B. Extreme waves

We follow the work of Katsidoniotaki et al. [29] and
investigate two sea states that corresponds to the 100-
year contour line. We use two approaches: (i) the equiv-
alent regular wave (ERW) approach [29] and (ii) full
3-hours sea states of irregular waves (IRW) estimated

using the JONSWAP spectrum with a spreading factor
of γ = 3.3. The cases are presented in Table II.

Fig. 4 shows the results of the deterministic simu-
lations of the equivalent regular wave cases using the
default values (the base case). Most notable is that the
positive heave motion is restricted by the limited

TABLE II
WAVE CASES EXAMINED.

Regular waves H (m) T (s)

ERW1 9.5 8.2
ERW2 13.3 11.7

Irregular waves Hs (m) Tp (s)

IRW1 5.0 8.2
IRW2 7.0 11.7
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TABLE III
RANDOM INPUT VARIABLES, DISTRIBUTIONS AND RANGES.

Variable Distribution Lower Upper
bound bound

Wave height Uniform 0.9H 1.1H
Wave period Uniform 0.9T 1.1T
Buoy MoI Uniform 0.9Iyy 1.1Iyy
Buoy CoG Uniform 0.9zb 1.1zb
Buoy drag Uniform 0.5CD 1.5CD

Line diameter Uniform 0.9Dc 1.1Dc

PTO damping Uniform 0.75CPTO 1.25CPTO

End-stop stiffness Uniform 0.75Kes 1.25Kes

strokelength, and the surface buoy is consequently
deeply submerged under the wave crest. As the buoy
surges back when the wave trough arrives, the moor-
ing goes slack and the translator falls back to hit the
lower end-stops. When the mooring goes back in re-
tension a snap load is visible.

C. Basic VMEA
From a basic VMEA study we identify eight vari-

ables to be investigated in more detail: significant
wave height, peak period, mooring line diameter, the
moment of inertia of the buoy, the centre of gravity of
the buoy, the PTO damping coefficient, the translator
friction coefficient, the end-stop spring stiffness and
end-stop damping coefficient. They were chosen from
having the largest sensitivity coefficients. Please note
that the VMEA was performed for the case of the PTO
operating as usual. Other cases such as a freely running
or stuck generator would potentially have different

values. The deterministic or constant parameters of the
set-up are presented in Table I. As we are to assess
the sensitivity of the variables on the extreme loads,
we assume uniform distributions centered around the
baseline values (see Table I) with parameter ranges as
depicted in Table III.

D. Sensitivity analysis using equivalent regular waves: d=1

We compute solutions on the Experiment of Design
(EoD) input points for different orders P = [4, 5, 6]
of the gPC (which in this section corresponds to the
Smolayk quadrature points). We then construct the gPC
surrogate models from these solution samples. This is
carried out for the maximum tension at the fairlead
and the upper and lower maximum end-stop forces.

Fig. 5 shows some examples of the convergence
of the surrogate models for maximum tension of the
ERW1 case. The dots show the deterministic solutions
at the quadrature points and the solid lines show the
resulting gPC surrogate model. We see that for most
cases a polynomial order of P = 4 is sufficient. Using
the surrogate models we perform MC simulations us-
ing 1 million samples to obtain the PDFs. The PDFs
for the maximum fairlead tension are shown in Fig. 6.
Even though the input distribution is uniform, the
PDFs are clearly more complicated, which highlights
the nonlinearity of the mooring and end-stop system.
The resulting statistics are presented in Tables IV and
V. It is observed that for the steeper wave case ERW1
the largest variation is associated with the wave param-
eters, whereas for ERW2 the drag and PTO damping
have the largest variation. As the lower end-stop force
arise from the translator hitting the end-stop during
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Fig. 5. Convergence of gPC surrogate models for the maximum tension in the mooring cable at the fairlead. ERW1 case using d = 1.
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Fig. 6. Convergence of PDFs for the maximum tension in the mooring cable at the fairlead. ERW1 case using d = 1.
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TABLE IV
MEAN AND STANDARD DEVIATION OF MAXIMUM FAIRLEAD

TENSION, UPPER AND LOWER END-STOP FORCES FOR THE ERW1
CASE USING d = 1.

Case Fairlead Upper Lower
tension (kN) end-stop (kN) end-stop (kN)

Mean Std dev Mean Std dev Mean Std dev

H 189.4 13.3 -60.1 4.2 90.2 0.0
T 183.3 24.1 -47.9 25.9 89.9 0.7
Iyy 190.5 0.1 -62.7 0.1 90.2 0.0
zb 189.8 1.3 -62.4 1.5 90.2 0.0
Cd 188.0 2.7 -58.3 16.1 90.0 0.6
Dc 190.4 3.3 -62.5 1.3 90.2 0.2
Cpto 186.6 8.2 -45.9 30.3 90.7 11.8
Kes 190.4 0.5 -62.4 3.7 90.0 4.9

TABLE VI
MEAN AND STANDARD DEVIATION OF MAXIMUM FAIRLEAD

TENSION, UPPER AND LOWER END-STOP FORCES FOR THE RW1 AND
RW2 CASE USING d = 5.

Case Fairlead Upper Lower
tension (kN) end-stop (kN) end-stop (kN)

Mean Std dev Mean Std dev Mean Std dev

RW1 183.1 26.5 -46.9 27.3 84.0 23.3
RW2 147.1 9.5 -70.8 15.4 92.2 11.2

free fall it is only the PTO damping and end-stop
stiffness that influence the force.

E. Sensitivity analysis using equivalent regular waves: d=5

To keep the dimension of the problem low, only
the five variables with the highest impact (the largest
variance) in the d = 1 results are identified for
further investigation. The investigated variables are:
wave height, wave period, drag coefficient, PTO damp-
ing and end-stop stiffness. We generate 100 sampling
points using the latin hyper cube (LHC), and run the
deterministic model with those input variables. The
PDFs for the fairlead tension and upper/lower end-
stop forces for ERW1 are shown in Fig. 7. The shape
of the PDF for the fairlead tension greatly resembles
the PDF obtained by d = 1 for the wave height, but
looking at the sensitivity index in Fig. 8 it is actually
the wave period that has the highest sensitivity.

Indeed, for the ERW1 case the d = 5 simulation
has the same ranking of sensitivity as the d = 1
simulations, i.e. in falling order for fairlead tension:
H , T , Cpto, CD and Kes. For the upper end-stop the
ranking is the same between the d = 1 and d = 5
simulations, but the importance of the PTO damping
is enhanced for the d = 5 case. Also for the lower end-
stop the PTO damping is the most sensitive variable.

Looking at the ERW2 case (Figs. 9 to 10) the PDFs
have smaller variances, and sensitivity index differs
greatly for the maximum tension in the mooring line.
Here the PTO damping dominates whereas wave pe-
riod and drag have similar importance. The end-stops
have similar ranking as for the ERW1 case.

TABLE V
MEAN AND STANDARD DEVIATION OF MAXIMUM FAIRLEAD

TENSION, UPPER AND LOWER END-STOP FORCES FOR THE ERW2
CASE USING d = 1.

Case Fairlead Upper Lower
tension (kN) end-stop (kN) end-stop (kN)

Mean Std dev Mean Std dev Mean Std dev

H 139.0 4.7 -66.4 1.2 90.9 0.1
T 140.0 3.8 -65.8 9.5 90.8 0.1
Iyy 136.5 0.1 -66.4 0.0 90.9 0.0
zB 136.3 0.6 -66.6 0.8 90.9 0.1
Cd 142.7 5.9 -64.9 4.6 90.8 0.1
Dc 136.5 0.8 -65.1 2.6 90.9 0.3
Cpto 141.4 7.1 -67.4 14.0 92.6 9.8
Kes 136.4 0.4 -66.0 2.9 90.8 4.9

TABLE VII
MEAN AND STANDARD DEVIATION OF MAXIMUM FAIRLEAD

TENSION, UPPER AND LOWER END-STOP FORCES FOR THE IRW1 AND
IRW2 CASES USING d = 5.

Case Fairlead Upper Lower
tension (kN) end-stop (kN) end-stop (kN)

Mean Std dev Mean Std dev Mean Std dev

IRW1 278.7 13.9 -187.3 27.7 94.6 11.6
IRW2 269.5 7.5 -222.1 20.2 94.7 11.7

F. Sensitivity analysis using irregular waves: d=5

The equivalent regular wave approach used above
is attractive because the simulation times are rela-
tively short. However, it is well-known that the results
using ERW differs significantly from full sea-states
[30]. Hence, we also investigate the sensitivity using
irregular waves by applying the multi-dimensional
d = 5 analysis. Please note that the random phase
angle is not treated within the gPC framework as the
resulting dimension would be far too large. Instead
we treat the phase angle according to DNVGL-OS-
E301 [31], i.e. by running 10 realizations of the sea
states for every quadrature point in the LHC (using the
same random seeds for the realizations). At every LHC
sampling point, the maximum/minimum values found
from the 10 realizations are then used in constructing
the surrogate models.

The resulting PDFs and Sobol indices are presented
in Figs. 11 to 14 and in Table VII. We notice that:

• there are significant differences between the PDFs
from the ERW cases and the irregular wave cases.
The ERW greatly underestimates the maximum
loads in the fairlead and upper end-stop. Only the
lower end-stop is similar (for the same reason as
before, being governed by the gravity-driven fall
of the translator);

• the maximum mooring tension is not associated
with the largest waves. This is due to the limited
stroke-length of the translator;

• The difference in mean and variance between
IRW1 and IRW2 is rather small and within one
standard deviation.

• for the mooring tension the most sensitive variable
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(a) Fairlead tension (b) Upper end-stop force (c) Lower end-stop force

Fig. 7. PDFs for the ERW1 case using d = 5.

(a) Fairlead tension (b) Upper end-stop force (c) Lower end-stop force

Fig. 8. Total sensitivity index for the ERW1 case using d = 5.
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Fig. 9. PDFs for the ERW2 case using d = 5.

(a) Fairlead tension (b) Upper end-stop force (c) Lower end-stop force

Fig. 10. Total sensitivity index for the ERW2 case using d = 5.
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Fig. 11. PDFs for the SS1 case using d = 5.

(a) Fairlead tension (b) Upper end-stop force (c) Lower end-stop force

Fig. 12. Total sensitivity index for the SS1 case using d = 5.
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Fig. 13. PDFs for the SS2 case using d = 5.

(a) Fairlead tension (b) Upper end-stop force (c) Lower end-stop force

Fig. 14. Total sensitivity index for the SS2 case using d = 5.



100 INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 5, NO. 1, JUNE 2022

is the buoy drag coefficient, which has a larger
impact in the irregular waves than in the ERW
cases.

VI. CONCLUDING REMARKS

We have performed a sensitivity analysis of extreme
loads for mooring and end-stop forces for a taut-
moored point-absorber (the Uppsala Universty WEC).
From a basic VMEA we identified eight input variables
associated with the largest uncertainties, covering: the
design case (significant wave height and peak period),
the surface buoy (centre of gravity, moment of inertia,
drag coefficient), the PTO (PTO damping, end-stop
stiffness) and the mooring line (line diameter).

Surrogate models based on gPC were created for reg-
ular waves; both single dimension cases (one variable
at a time, d = 1) and multi-dimensional (d = 5) cases.
We also illustrated that a rather low polynomial order
(p = 4) could be used. Surrogate modelling yields great
savings compared to MC simulations using the full
deterministic model. To simplify the analysis of the
irregular wave cases, the random phase angles wave
components were not treated in the gPC approach.
However, we still needed a fair amount of simulations
to construct the surrogate models. For the cases pre-
sented we used 10 phase seeds and 100 LHC samples
giving 1000 simulations per sea state. Large differences
were seen between using equivalent regular waves and
irregular waves, both in terms of mean, variance and
sensitivity indices. Thus, it is recommended to use full
sea-states for the case of extreme loads on the UU WEC.

Finally, it should be mentioned that the significant
over-topping of the WEC that takes place raises some
concerns about the numerical accuracy of the linear
potential flow simulations for these load cases. This
problem can be addressed by constructing the sur-
rogate models in a multi-fidelity manner combining
linear potential flow and CFD simulations.
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