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Misled by Betz and unsteady flow – review
on turbine arrays falsely deemed ‘optimal’

Peter F. Pelz, Jan Lemmer, Christian B. Schmitz

Abstract—A turbine array is an adjustable flow resis-
tance R placed in a tidal channel. Ideally, it is designed
and operated to maximise energy yield. Garrett & Cummins
(2005), using optimal control theory applied to the RC-
element channel (R) and basin (C), showed: the energy
extraction from the flow PT + PD is maximised when the
flow rate is slowed down by a factor of 1/

√
3. This result

is independent of the ratio of the extracted mechanical
power PT to the total power extraction including the power
loss PD due to the mixing of the bypass flows within the
turbine field. The optimisation task for turbine arrays is
maximising PT. This objective raises two questions: ”What
is the maximum power PT that can be extracted, and what is
the optimal design (size, topology) and operation to achieve
this output?” When addressing them, the literature still
uses the Betz ‘limit’ as a reference. The work presented
highlights two major problems. First, the Betz ’limit’ is
not a constant upper bound for open channel flow. This
problem has been discussed and solved by the first author
(2011, 2020). Second and more importantly, the presented
paper points out the misconception under which several
research studies referred to array topologies as ‘optimal’
with regard to design and operation. Hereby, the presented
paper contributes to the advancement of tidal power on an
axiomatic basis. The misleading by Betz and overvaluing
of transient effects is made transparent in a scientific
discourse.

Index Terms—Betz limit, blockage, coefficient of perfor-
mance, optimisation, quasi-steady flow, tidal array, tidal
fence, turbine array

I. INTRODUCTION

THE aim of modelling tidal turbines is to provide
designers and engineers with guidelines where

to build, how to arrange and how to operate tidal
turbines in a given tidal channel. Tidal turbines as a
component of a technical system are embedded in a
complex socio-technical environment, cf. Fig. 1. Each
system defined by a system boundary is characterised
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Fig. 1. Technical systems are embedded in a socio-technical environ-
ment of stakeholders. The focus of this paper is the optimal design &
operation of the technical system consisting out of the tidal channel,
the basins and the turbine array.

by objectives and constraints. The inner boundary
encloses the material choice. The component system
is focused on the individual component, e.g. one
individual turbine without considering the bypass or
the added resistance to the channel. In the techno-
economic ecological system, the quality measures
costs to society as well as value to society are either
objectives or constraints [1], [2]. The outermost
system boundary encloses the socio-technical system
including the different stakeholders.

In this paper we focus the discussion on the technical
system consisting out of the tidal channel, the basins
and the turbine array. For this technical system max-
imising the harvested energy WT over one tidal cycle
with the cycle time T is the major point of interest and
results in the optimisation problem

maxWT = max

∫ T

0

PT dt. (1)

With PT as the array’s power output which is the sum
of the individual turbine power outputs.

In this paper it is clarified why using the Betz
coefficient of performance CP,Betz can be misleading
regarding the optimal operation and design of an
array. Governing physical principles in a tidal channel
are highlighted. These need to be taken into account
when optimising the design and operation of an array.
In order to answer this, we address four detailed
questions:

1) Can the flow in a tidal channel be modelled as
quasi-steady?
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2) How can a two-stage optimisation problem for
design and operation be formulated?

3) Are the energy references chosen correctly to
solve the optimisation problem?

4) Are the used actuator disc models physically con-
sistent and hence suitable to answer questions 1
to 3?

Question 1 will be investigated by an order of
magnitude analysis based on dimensional analysis in
section II of the paper. The second question will be
answered by a formal derivation of a two-stage optimi-
sation problem based on (1). It is clarified in section III
why using the Betz coefficient of performance CP,Betz
can be misleading regarding the optimal operation and
design of an array and an answer to question 3 is given.
In section IV, question 4 is answered by recapturing
recent findings about the physical consistency of cur-
rent turbine and array models. Finally, an assessment of
current approaches from an optimisation view is done.

II. CONDITION FOR QUASI-STEADY FLOW

In order to answer question 1, it is essential to
understand the conditions for quasi-steady flow. In
steady flow, the flow values are only a function of the
position. Whereas in transient flow they are a function
of the position and time. If the temporal change
follows a pattern the complexity can be reduced (e.g.
harmonic flow).

The time dependencies in dynamics are summarized
in Fig. 2. If the changes are so slow that the system
reacts immediately to the changes in boundary
conditions it is called quasi-steady [3]. Typically for
quasi-steady problems the time t does not enter the
model equation explicitly in form of a differential
operator but only implicitly as a time dependent
parameter in the boundary conditions.

There are two necessary conditions to be met for a
system to be named quasi-steady. Firstly, the excitation
frequency must be much smaller than the system’s
lowest natural frequency: f ≪ 1/

√
IC. Here I is

the inductance representing liquid body and C is the
capacity or compliance associated with the storage of
mass and/or energy. The latter is here, due to the
evaluation of the free surface.

The flow through a tidal channel is a function of
time: in the northern hemisphere tides are usually
semidiurnal, this translates into a cycle time of T =
f−1 ≈ 4.5 × 104 s. For a channel of depth h0 ∼ 101 m
and length L ∼ 104 m, the order of magnitude of the
natural frequency is

√
gh0/L ∼ 10−3 s−1, which is two

orders of magnitude larger than f ∼ 10−5 s−1.
Secondly, for a diffusion process, the excitation fre-

quency f must be much smaller than the diffusion
time of the process for a quasi-steady flow. Here, it
is the diffusion of turbulent shear stress τb across any
cross section of the tidal channel or along a mixing
layer due to a change in the boundary condition. The
order of magnitude of this diffusive relaxation process

periodic/
cyclic

transient
steady

harmonic

time-varianttime-invariant

quasi-
steady

Fig. 2. Euler diagram for classification of time-variant and time-
invariant processes, adopted from [2].

is determined to be νt/h
2
0 with the eddy viscosity νt

and the water depth h0. The order of magnitude of the
eddy viscosity νt is given by the product of frictional
velocity u∗ =

√
τb/ϱ and water depth, νt = κ u∗y ∼

u∗h0. Here, κ = 0.4 is the von Kármán constant. From
von Kármán’s log-law

u0

u∗
≈ 1

κ
ln

h0

k
+ 5, (2)

we derive the order of magnitude estimation for the
frictional velocity u∗ ∼ (1 . . . 100) cm/s for a seabed
roughness of k ∼ (1 . . . 10) cm and a undisturbed flow
velocity u0 ∼ (1 . . . 10)m/s.

To summarise, the two necessary conditions to be
met for a quasi-steady channel flow are written as two
dimensionless products

ε =
f√
IC

=
fL√
gh0

∼ 10−2, (3)

Wo2 =
fh2

0

νt
∼ fh0

u∗
∼ 10−2. (4)

The shallow water equations written in dimensionless
form, shown in Sec. V, can also be posed as
regular perturbation problem, with the perturbation
parameter ε and the stationary problem as an
undisturbed problem. The parameter Wo is known as
the Womersley number in biofluid mechanics [4]. It
describes the evolution of the velocity profile in an
oscillating flow. It should be noted that the evolution
of velocity profiles is not modelled by the shallow
water equations (SWE). It only appears in a 3D flow
model. Hence, by solving the SWE the diffusion effects
are ignored right from the very beginning.

Both perturbation parameters are much smaller
than 1. Hence, the flow is indeed quasi-steady. Here,
it has to be stressed that the transient effects due to
the inductance of the flow are of minor importance
and usually negligible due to the smallness of the
perturbation parameter ε ∼ 10−2. Only in the special
case of a very long and at the same time shallow
channel, does the wave cycle time share the same
order of magnitude with the tidal cycle time T . It
must therefore be treated as transient [5]. This is
consistent with the findings of Garret & Cummins [6],
Pelz et al. [5] and contradicts the recent paper from
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Fig. 3. Electrical analogy to a quasi-steady tidal channel flow for
ε ≪ 1,Wo ≪ 1.

Bonar et al. [7].

The electrical analogy is most suitable for
demonstrating the findings illustrated in the above
even though this analogy is valid only for linear
systems. Here, we fully recognise that the flow in a
tidal channel and the flow through a turbine array
is nonlinear and therefore a linear model is not an
appropriate model. This is due to the nonlinearity
of the convective term in any transport equation. In
other words, the dissipative character of the flow
is nonlinear, i.e. the resistance elements of the tidal
channel. Nevertheless, the role of inductance and
compliance can well be understood in the electrical
analogy. In a linear system the difference of the total
head ∆H = HI −HII between the two infinitely large
basins drives the flow, cf. Fig. 4. Again, this is true
only for linear systems. Researchers and engineers
would be misguided in considering this difference
to be the driving force when attempting to capture
the important nonlinear effects of the hyperbolic
system. In fact, as in gas dynamics, the head ratio
HII/HI = hII/HI is physically more appropriate. This
head ratio gives the downstream boundary condition
to the flow [5].

The first harmonics with Ω = 2πf of the head
difference ∆H ≈ R(ĤeiΩt) and the two cyclic volume
flows, QA through the array and the bypass volume
flow QB, are given by the Fourier transform

∆Ĥ =
1

π

∫ 2π

0

∆H (Ωt) e−iΩt dΩt,

Q̂A,B =
1

π

∫ 2π

0

QA,B (Ωt)e
−iΩt dΩt.

(5)

For ε ≪ 0 the volume flow is in phase with the head
∆Ĥ as depicted in Fig. 3, i.e.

arg Q̂A/∆Ĥ = arg Q̂B/∆Ĥ = 0. (6)

III. ARRAY OPTIMISATION

We now address the second question of this paper,
the proper formulation of the optimisation problem.
As it is common in engineering science, the optimisa-
tion problem has an objective and several constraints.

The constraints are given by physical laws such as
the energy equation and continuity equation as well
as the boundary conditions. Further constraints are
functional, ecological and logistic requirements and
available technologies.

The design task based on eq. (1) is written as

maxWT = max

∫ T

0

PT(d, o(t), c(t)) dt,

s. t. physical laws.
(7)

The turbine power PT(t) is a function of the array
design d, the operation o(t) = o(t + T ) such as the
turbine volume flow QT(t) or the turbine head
HT(t) := PT/(ϱgQT(HI −HII)). The transient boundary
conditions c(t) are given by the energy height HI(t)
or HII(t). To give an example, Pelz et al. [5] use for
a tidal turbine with bypass the blockage σ as design,
the turbine head HT as operation and either the
downstream Froude number Fr2 or the dimensionless
water depth h2 := h2/HI as boundary conditions.

The boundary conditions are given by nature and
can not be influenced by the engineer. Thus for
practical optimisation, the design d and operation o(t)
over the tidal cycle need to be in focus. This may be
formulated as a two-stage constrained optimization
problem.

It is two-stage since first the design has to be opti-
mised anticipating the operation o(t) and the boundary
conditions c(t). This is typical for many engineering
problems [2], [8]. While the operation parameter can
be adapted after the installation, the design is fixed
with construction. Therefore an optimal design for the
whole cycle needs to be found. Here the constrained
optimisation problem (7) is in fact an optimal control
problem for the operation as a function of design and
boundary conditions. The optimal control problem is
equivalent to the variational problem [9]

δ

∫ T

0

PT(d, o(t), c(t))dt. (8)

The solution of this variational problem (8) is equiv-
alent to a solution of the Euler-Lagrange equation
[10, p. 184f.]

∂PT(d, o(t), c(t))

∂o
=

d
dt

(
∂PT(d, o(t), c(t))

∂ȯ

)
. (9)

The ‘right hand side’ of the Euler-Lagrange equa-
tion (9) is zero, as long as Wo ≪ 0 and ε ≪ 0 (cf. Sec. II).
Hence the optimisation problem reduces to

∂PT(d, o(t), c(t))

∂o
= 0. (10)

In a fully obstructed channel the two-stage problem
reduces to a single-stage (operation) problem, which
can be solved analytically [6], [9]. For turbines with
bypass flow (10) needs to be solved numerically or by
using an analytical approximation for PT.

The operation parameter o(t) for the general array
problem is described by all individual turbine heads



242 INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 5, NO. 3, DECEMBER 2022

HTl,k(t). HTl,k(t) is the turbine head of the (l, k)-th
turbine in a turbine array with L rows and K turbines
per row. An alternative way to describe the operation is
to use the volume flow rate through the channel Q(t),
as used by Schmitz & Pelz [9]. The advantage of this
is, that the volume flow is the same for all turbines in
one column whereas the optimal turbine head differs
for each turbine. Assuming that the turbines reduce
the volumetric flow in an optimal way, i.e. HTl =
HTl,opt [11], the number of operational parameters is
drastically reduced from L to 1. As a result of the
optimisation the optimal design dopt and the optimal
operation oopt(t) are calculated.

IV. REFERENCE ENERGY

In the following section, we answer the question:
‘Are the energy references chosen correctly to solve
the optimisation problem?’. We show that CP,Betz does
not use a reasonable reference energy scale in the
case of tidal power. First, a dimensional analysis is
presented and then the question is answered whether
the energy references are chosen correctly for solving
the optimisation problem (7).

The performance rating of a tidal turbine or a tidal
fence is based on the coefficient of performance CP
which is given by the ratio of extracted mechanical
power PT to the available power Pavail. The coeffi-
cient of performance is also used as objective for the
optimisation in many studies. It was introduced by
A. Betz over 100 years ago for wind turbines [12], while
F. W. Lanchester used a similar approach for analysing
propellers before [13]. The reference energy scale of a
wind turbine is the kinetic energy of the undisturbed
free stream flow, thus the available power is given by

Pavail,Betz :=
ϱ

2
u3
0AT. (11)

With the turbine area AT, the free-stream velocity u0

and the fluid density ϱ. Betz provides the upper limit
for the power extraction of an ideal wind turbine as
(CP,Betz)max = 16/27.

A. Dimensional analysis

Figure 4(a) shows the top view of an array in a
tidal channel schematically, whereas Fig. 4(b) shows
the corresponding cross-sectional view. The overall
power output of all turbines PT(t) of the array being
described by a lateral array blockage, 0 ≤ σA ≤ 1, and
length factor 0 ≤ λ ≤ 1. Depending on the structure
of the array and the number of rows, further design
parameters such as the local blockage 0 ≤ σl ≤ 1 are
required. All these parameters are summarized in d
for simplicity. The downstream boundary condition
is given by the water depth hII at the outlet of the
tidal channel. For subcritical flow, this depth equals
HII due to Newton’s second law ‘actio est reactio’ [5].
The power output and therefore the coefficient of
performance depends further on the surface averaged
friction factor cf multiplied with the seabed area LB
and the turbine operation parameter given by the
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Fig. 4. Schematic of a turbine array covering the width σAB and
length λL of the tidal channel; downstream of the turbine array the
mixing of array volume flow QA(t) and bypass volume flow QB(t) =
Q(t)−QA(t) takes place; (a) top view (b) side view of the channel.

volume flow QA(t) through the turbine array or the
turbine head HA(t) representing the power extraction
of the whole array.

Inertia is negligible for a typical tidal channel,
because the conditions for quasi-stationary flow
apply, as shown in Sec. II. Hence, time only appears
parametrically in the boundary condition h(t), HI(t)
but not explicitly.

For reasons of dimensions [14], [15] the coefficient
of performance in the quasi-steady flow is given as a
result of a dimensional analysis

CP = fn

σA, σl, λ, . . .︸ ︷︷ ︸
d

, HA︸︷︷︸
o(t)

, hII︸︷︷︸
c(t)

,
L

HI
cf

 , (12)

with the dimensionless measures

CP =
PT

Pavail
=

PT

2ϱg1/2(2/5HI)5/2B
≤ ηA

2
,

HA =
HA

HI
, hII :=

hII

HI
,

(13)

and the available power [16]

Pavail := 2ϱBg3/2
(
2

5
Heff

)5/2

. (14)

The coefficient of performance is limited to 1/2 by any
means as shown by the first author of this paper [16].

Now the question remains if the constitutive equa-
tion for cf does depend on time. This is not the case,
as long as the diffusion time H2

I /νt ∼ h2
0/νt is much

shorter than the cycle time T = 12.42 h. With this the
diffusion time is of the order h2

0/νt ∼ h0/u∗ ∼ 103 s.
This is in any case much shorter than the cycle time:

fh2
0

νt
≪ 1. (15)
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B. Reference energy scale in tidal channels
A reasonable reference energy scale of a tidal turbine

is not the same as for wind turbines due to the free
surface flow. This influence is only negligible if the
turbine blockage σ is small and the Froude number Fr
tends toward zero. Then a hydrokinetic turbine in
free surface flow can be treated with Betz’s disk
theory and thus the velocity u0 is an appropriate basis
for an energy scale. Otherwise, the effective height
Heff := H0 + zI − zII with the specific energy height
H0 = h0 + u2

0/2g above the base height z = zI before
the array is a suitable and functional choice for an
energy scale [16]. The base height after the array zII is
usually equal to zI = zII = z and is therefore omitted.
The energy height forms the counterpart to the boiler
state in gas dynamics, i.e. it is H0 = HI = hI + u2

I /2g.

The first law of thermodynamics shows that for a
turbine efficiency of one and a fully obstructed channel,
the maximum mechanical power that can be extracted
from the flow is [16]

PT,max = ϱBg3/2
(
2

5
Heff

)5/2

. (16)

This requires an optimal control of the turbine
head HT for a given HI, with the volume flow QT
through the turbine. The operation is optimal for
σ = 1 provided that HT := HT/(ηTHeff) = 2/5 is set.
At this operating point, the unusable energy flux
due to underwater flow and the utilized exergy flux
are equal and the total, hypothetical usable, exergy
current provided by nature is given by Eq. (14).

As in Betz [12], the available power is defined
by a hypothetical machine with no downstream, i.e.
an ideal energy sink. The coefficient of performance
is therefore at most half of the turbine efficiency
CP := PT/Pavail ≤ ηT/2 [16]. This asymptote is
independent of the design d and operation o(t) of the
turbine field.

A comparison between the two definitions of the
coefficient of performance is shown in Fig. 5. The
Betz coefficient of performance provides no constant
upper limit and it can be shown that CP,Betz is even
singular for σ = 1,Fr0 → 0 [5]. To act as a reference
value, CP needs to be independent from the Froude
number Fr0. Otherwise values for CP,Betz greater than
the Betz-limit of (CP,Betz)max = 16/27 and also greater
like one arise. This is commonly known and has been
described by many authors [17]–[20]. Nevertheless the
Betz coefficient of performance is still widely used in
the tidal community, but gives no orientation as an
upper limit should do.

It is obvious that definition (14) provides a
reasonable reference whereas the Betz coefficient
of performance is only useful for small blockages
σl ≪ 1, σA ≪ 1 in channels with a low Froude number.

The second disadvantage of the CP,Betz becomes ap-
parent when it is used for the optimization of tidal
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shows CP as defined by Pelz (2011). The coefficient of performance
is independent of the Froude number and has a constant upper limit,
whereas there is no Betz-limit for σ > 0 (adapted from [5]).

arrays that have high blockage ratios. In this case,
the volume flow through the channel depends on the
operation of the array and the free surface influence is
not negligible. Thus the assumption of an unaltered
flow is invalid for such an array and the velocity
u1 far in front of the array, that is often used for
calculating CP,Betz, changes depending on the array
operation. Therefore optimal coefficient of performance
does not necessarily lead to optimal operation in terms
of maximized power output. This was shown by [21],
[22] and is highly misleading for developers.

V. ASSESSMENT OF CURRENT APPROACHES

In order to answer the question ‘are the used actuator
disc models physically consistent and hence suitable to
answer questions 1 to 3’ we analyse five selected array
modelling approaches. A short recapture of current
models for both turbine and arrays is given before we
discuss their optimisation objective, boundary condi-
tions and results.

A. Recapture of modelling approaches for tidal arrays

There are tree models for tidal turbines: First (i)
the model of Garret & Cummins [23]. Secondly
the model introduced by Houlsby et al. [24] and
Whelan et al. [17] which we refer to as model (ii). The
third model (iii) was introduced by Pelz et al. [5].

The Models (i)-(iii) for a single turbine are also
capable of describing an array that spans the whole
channel width as shown by the above mentioned
authors. An extension to model (i) is the work of
Vennell [25] for an array spanning the whole channel
width, which is a combination of model (i) and the
channel model of Garret & Cummins [6].

So far, arrays completely blocking the whole channel
width (σA = 1) were considered. The optimisation
problem (10) for a partial array (σA < 1) depends not
only on the operation and the array design in terms of
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array blockage σA but also on the array arrangement,
especially the intra-turbine spacing, which can be
described with the local blockage σl [18]. For a
given array size (σ := σAσl) and a known boundary
condition c(t), e.g. hII or Fr II, both arrangement and
operation need to be optimised. Nishino & Willden’s
model for partial arrays is based on the turbine
model (i). It was extended in a following paper [19]
to include the expansion of the turbine stream-tubes
due to the array bypass flow.

The first partial array model that includes free
surface influences was proposed by Vogel et al. [20]
and is based on turbine model (ii), cf. Fig 6. This
model does not consider the stream-tube expansion as
introduced by Nishino & Willden [19].

ℎI

𝑢I

𝑢1

𝑢1

ℎ1

1 2

1I II

𝑢II

ℎII

𝑢2

ℎ2

𝐴𝑇

𝜎𝐴𝐴𝐶

𝑄 = 𝑐𝑜𝑛𝑠𝑡.

Fig. 6. Top view (b) of the array from Vogel et al. (model III) and side
view (b) of the associated turbine model (ii). The authors assume the
incoming volume flow as unaltered by the array operation, i.e. Q is
constant. (adopted from [20])

The first model that combines free surface effects,
stream-tube expansion as well as channel dynamics
is from Gupta & Young [26]. It is an extension and
combination of the models by Garret & Cummins [6],
Nishino & Willden [18], [19] and Vogel et al. [20].
Bonar et al. [7] recently presented a numerical ap-
proach which combines the solution of the shallow
water equations for the large scale calculation with the
actuator disc model (ii) on the turbine scale. They con-
sider the free surface influence as well as the channel
dynamics and partly blocking arrays in one approach.
They found a beneficial effect of the oscillating flow on
the power generation for a specific tidal channel.

B. Discussion
Current studies on tidal arrays differ in objective

and physical constraints. The latter is subdivided into
model approaches and boundary conditions. Many
studies provide an isolated examination of a physical
effect, for instance free surface effects [17], local block-
age [18], [19] and channel dynamics in tidal arrays [25].
The studies usually present an ‘optimal’ array. Yet each
of the proposed array designs or operations are only
optimal if a special case applies and not an optimal
solution of Eq. (7), due to the following reasons:
– Neglecting guiding physical effects in the array

and the surrounding channel.
– Ignoring the disturbance of the flow due to the

array design and operation.
– Misinterpreting transient effects.
An overview of the selected studies is given in

Table I, we will discuss them from an optimisation
point of view. For clarity, upper Roman numerals are
used to reference the array models.

The objective for optimising a tidal array is given by
Eq. (7). For studies that assume steady flow (I) & (III),
the integration over the tidal cycle vanishes and the ob-
jective is simplified to maxPT. This is further reduced
to

maxCP,Betz(d, o(t), c(t)). (17)

This is only valid if Pavail is not a function of d, o(t), c(t),
which is only the case for unaltered flow as assumed
by model (I) & (III). Otherwise, even in steady flow,
the reference velocity u1 that is used to calculate CP,Betz
is influenced by the array operation and design, as
shown in section IV. Thus maximising CP,Betz does
not necessarily led to PT,max, when the assumption of
unaltered flow is changed to head-driven flow for a
further investigation, as shown in [21], [22]. This was
avoided in model (IV) and (V) by using the unaltered
(flow without the array) flow velocity u0 instead of u1

as energy reference to calculate the Betz coefficient of
performance and Pavail. Vennell uses a slightly different
objective by optimising the product (CP,Betzu

3
max) ∝ PT,

to avoid the before mentioned influence of design
and operation on CP,Betz [22]. All these problems do
not occur if the appropriate energy scale Heff is used
to calculate the coefficient of performance instead of
using CP,Betz, cf. section IV.

The optimisation in approach (II) and (IV), which
are both quasi-steady models, is only performed
at an instant of the cycle, cf. (17) rather than over
a full tidal circle as is necessary for obtaining an
optimal array including its operation. In the case of
Vennell this is addressed in a later study [27], and it is
confirmed that a time-variant operation strategy o(t)
is needed for maximising the array power output.
Only in approach (V) is an appropriate objective for
optimising a tidal channel over a tidal cycle chosen.

The physical boundary conditions are usually given
by the location of a tidal channel and are a function
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TABLE I
ARRAY MODELS VIEWED FROM AN OPTIMISATION PERSPECTIVE.

objective
physical constraints

boundary conditions turbine
model

array
model transient

(I) Nishino & Willden [18] maxCP,Betz
1 unaltered flow (Q =const.) (i) partial steady

(II) Vennell [22] max(CP,Betzu
3
max) head-driven, rough channel (i) full quasi-steady

(III) Vogel et al. [20] maxCP,Betz
1 unaltered flow (Q =const.), Fr1 (ii) partial steady

(IV) Gupta & Young [26] maxCP,Betz
0 head-driven, rough channel (ii) partial quasi-steady

(V) Bonar et al. [7] max
∫ T
0 CP,Betz

0 head-driven, rough channel (ii) partial transient

(i) is the turbine model of Garret & Cummins [23], (ii) the model from Houlsby et al. [24] or Whealen et al. [17].
0 Pavail is calculated with the unaltered flow speed u0 of the channel
1 Pavail is calculated with the flow speed u1 far in front of the array

of time. The authors of model (I) and (II) falsely
assume that the flow in the channel is unaltered by
the array. This is only valid for low blockage ratios
σA ≪ 1, σl ≪ 1 and low turbine heads HT → 0 which
makes this boundary condition physically implausible,
especially for larger arrays. In the other models a
head-driven flow through a rough channel is applied
which respects the influence of the added drag due to
the array operation and its design.

The turbine model, which acts as a base for the
presented array models is an essential physical
constraint. The array models (I) & (II) are both based
on the turbine model (i) of Garret & Cummins [23].
Hence both models can not be used for high turbine
heads or highly blocked channels, where the free
surface influence is not negligible.

The array models (III)–(V) are based on a turbine
model proposed by Houlsby et al. [24] and by
Whelan et al. [17]. This model includes free surface
influences. A major disadvantage of this turbine
model is that it becomes physically incorrect, i.e.
wrong for relevant blockage ratios or high Froude
numbers. The reason for this is, that the free surface
influence on the deformation of the turbine stream
tube is not considered. Pelz et al. [5] showed that
the coefficient of performance and the volumetric
efficiency are overestimated for high turbine heads,
high blockages and high turbine heads and the
result that the equations can not be solved for higher
turbine heads, cf. Fig. 7. The predictions even become
inconsistent with the energy and continuity equation
for high turbine heads. For array model (III) this is
also reported for high local blockages by the authors
themselves. Hence models (III)–(V) are only valid if
the blockage and Froude number are low.

The roughness of the seabed is included in
model (II), (IV) and (V) which is important in the case
of long tidal channels as shown by the dimensional
analysis in section III. This is straight forward in
the case of an array spanning the full channel width
combined with turbine model (i), cf. array model (III):
the main flow velocity u1 is used to calculate the
drag losses, which is in fact identical to the veloc-
ity after the turbine row, due to the neglected free
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Fig. 7. Coefficient of performance (top) and specific volumetric
efficiency (lower graph) versus turbine head HT/HI for a single
turbine with blockage of σ = 0.75. The bold lines represent turbine
model (iii), the thin lines model (ii) and the dashed lines turbine
model (i). The conflict with the energy (top) and the continuity
equation (lower graph) are marked with a triangle (adapted from
[5]).

surface deformation in the turbine model of Garret
& Cummins [23]. This approach can not be used for
partial arrays because of the array bypass flow, which
has a length scale of order of the array length and a
different velocity (usually higher than the array core
flow). To calculate the drag losses properly the length
of the array wake must be known. Generally, since
the actuator disc theory is zero-dimensional, length
scales can not be obtained from it and can only be
modelled empirically, as done for array model (IV).
Using the shallow water equations, model (V), brings
the advantage of a two-dimensional model, where the
bottom drag is considered in the modelling equations
themselves.
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Fig. 8. Solution of the shallow water equations, calculated by Bonar et al. The unsteady elevation rise (a) and velocity drop in (b) indicate
the presence of a hydraulic jump (from [7]).

The models discussed so far deal with generic
channels in terms of a dimensionless model
formulation, whereas Bonar et al. [7] investigate a
specific tidal channel of length L = 20 km, undisturbed
water depth h0 = 20m, and cycle time T = 12.4 h, by
solving the shallow water equations for this site.

The perturbation parameter ε, that was introduced in
Sec. II, is also part of a dimensionless formulation of
the shallow water equation. This becomes obvious by
transforming the shallow water equations to a dimen-
sionless form (this was not done by Bonar et al. [7]):

ε
∂h+

∂t+︸ ︷︷ ︸
∼ε

+∇+q⃗+︸ ︷︷ ︸
∼1

= 0. (18)

With the dimensionless variables marked by the sub-
script +: t := t+T, x := x+L, y := y+L, u :=
u+

√
gh0, v := v+

√
gh0, h := h+h0, η := η+h0.

q⃗+ = h+U⃗+ is the volume flow vector with the depth
averaged velocity vector U⃗+ = u+e⃗x + v+e⃗y .
The momentum equations in dimensionless form read,

ε
∂q⃗+
∂t+︸ ︷︷ ︸

∼10−2

+

[
∇+ ·A+

1

2
∇+(h

2
+ − z2+)

]
︸ ︷︷ ︸

∼1

(19)

= η+∇+z+︸ ︷︷ ︸
∼1

+
L

h0
cf U⃗+|U⃗+|︸ ︷︷ ︸
∼1..10−1

+ ε

(
h0

L

)2
Tνt
h2
0

∇+ · ∇+q⃗+︸ ︷︷ ︸
∼10−2..10−5

.

For the tensor A = h+U⃗+ ⊗ U⃗+ the dyadic product
of the velocity vector is used. η is the free surface
elevation above the still water surface zs, h := η + zs
and z+ := zsh0.

From a mathematical point of view, the transient
terms ∂/∂t may be treated as a perturbation of
the quasi-stationary solution of the problem. The
perturbation parameter of this channel is ε ≈ 3.2×10−2.
Thus the use of a transient solver is unnecessary
because quasi-steady conditions apply.

Fig. 8 shows one result obtained by Bonar et al. at
the downstream position x/hsC ≈ 500 a jump (discon-
tinuity) in both surface elevation η and flow velocity u
is visible. This indicates the presences of a hydraulic

jump. The necessary condition for a hydraulic jump is
overcritical flow Fr > 1 which is usually not the case in
a tidal channel. It is questionable if the findings of this
work are valid for a general array in a tidal channel.

VI. CONCLUSION

Based on fundamental fluid mechanics and by
using a dimensional analysis it was clarified that
most tidal channels are quasi-stationary. This is
very important because it results in a reduction of
complexity since time is only an implicit parameter.
We have shown that the optimisation of a tidal
array can be treated as a two-stage optimisation
problem. For this optimisation, the correct objective
and boundary conditions have to be chosen. Using
the coefficient of performance introduced by Betz as
the objective is not appropriated because it uses an
unsuitable energy reference and can therefore result
in arrays falsely deemed ‘optimal’. Furthermore, the
optimisation must be done for a whole tidal cycle
in order to call an array ‘optimal’ and not only at
one point in time. Finally, the boundary conditions,
especially the turbine model, need to be set correctly.
All array models that were discussed here can not
be used for high blockages (σ > 0.25) and at the
same time high Froude numbers Fr > 0.1 and turbine
heads due to the underlying turbine models (i) and (ii).

Only turbine model (iii) [5] is suitable for modelling
high blockage arrays and the same time high turbine
heads HT or high Froude numbers. The extension of
this model to arrays of tidal turbines is subject to future
research.
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